# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Hardware device interfaces."""
import inspect
import functools
from mindspore._c_expression import MSContext, DeviceContextManager
from mindspore import log as logger
from mindspore import context
try:
from ._cpu import _HalCPU
CPU_AVAILABLE = True
except ImportError:
pass
try:
from ._gpu import _HalGPU
GPU_AVAILABLE = True
except ImportError:
pass
try:
from ._ascend import _HalAscend
ASCEND_AVAILABLE = True
except ImportError:
pass
_context_handle = MSContext.get_instance()
_device_context_mgr = DeviceContextManager.get_instance()
hal_instances = {}
valid_targets = ["CPU", "GPU", "Ascend"]
# Create hal instance as soon as module is imported.
for target in valid_targets:
if _context_handle.is_pkg_support_device(target):
if target == "CPU" and CPU_AVAILABLE:
hal_instances["CPU"] = _HalCPU()
elif target == "GPU" and GPU_AVAILABLE:
hal_instances["GPU"] = _HalGPU()
elif target == "Ascend" and ASCEND_AVAILABLE:
hal_instances["Ascend"] = _HalAscend()
else:
pass
def _check_inputs_validation(fn):
"""
Decorator to check inputs validation of device interfaces.
If device target's hal instance is not created, throw an exception.
"""
@functools.wraps(fn)
def deco(*args, **kwargs):
bound_args = inspect.signature(fn).bind(*args, **kwargs)
bound_args.apply_defaults()
params = bound_args.arguments
if "device_target" in params:
device_target = params["device_target"]
if device_target is None:
device_target = context.get_context("device_target")
params["device_target"] = device_target
if not isinstance(device_target, str):
raise TypeError(f"The argument 'device_target' must be str, but got {device_target}, "
f"type is {type(device_target)}.")
if device_target not in valid_targets:
raise ValueError(f"The argument 'device_target' must be one of "
f"{valid_targets}, but got {device_target}.")
if device_target not in hal_instances:
raise ValueError(f"{device_target} backend is not available for this MindSpore package."
"You can call hal.is_available to check the reason.")
return fn(*bound_args.args, **bound_args.kwargs)
return deco
def _check_device_id(fn):
"""
Decorator to check whether the device id is valid: must be equal or greater than 0 and less than device count.
"""
@functools.wraps(fn)
def deco(*args, **kwargs):
bound_args = inspect.signature(fn).bind(*args, **kwargs)
bound_args.apply_defaults()
params = bound_args.arguments
device_target = None
if "device_target" in params:
device_target = params["device_target"]
dev_count = device_count(device_target)
if "device_id" in params:
device_id = params["device_id"]
if not isinstance(device_id, int):
raise TypeError(f"The argument 'device_id' must be int, but got {device_id}, "
f"type is {type(device_id)}.")
if device_id < 0:
raise ValueError(f"The argument 'device_id' should not be negative, but got {device_id}.")
if device_id >= dev_count:
raise ValueError(f"The argument 'device_id' must be less than device count: {dev_count}, "
f"but got {device_id}.")
else:
raise RuntimeError(f"Function {fn} has no input named 'device_id'. "
"Please do not use '_check_device_id' decorator.")
return fn(*args, **kwargs)
return deco
[文档]def is_initialized(device_target):
"""
Returns whether specified backend is initialized.
Note:
MindSpore's backends "CPU", "GPU" and "Ascend" will be initialized in the following scenarios:
- For distributed job, backend will be initialized after `mindspore.communication.init` method is called.
- For standalone job, backend will be initialized after running
the first operator or calling creating stream/event interfaces.
Args:
device_target (str): The device name of backend, should be one of "CPU", "GPU" and "Ascend".
Returns:
Bool, whether the specified backend is initialized.
Examples:
>>> import mindspore as ms
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> ms.context.set_context(device_target="CPU")
>>> assert not ms.hal.is_initialized("CPU")
>>> a = Tensor(np.ones([1, 2]), ms.float32)
>>> b = Tensor(np.ones([1, 2]), ms.float32)
>>> c = ops.add(a, b).asnumpy()
>>> print(ms.hal.is_initialized("CPU"))
True
"""
if device_target not in valid_targets:
raise ValueError(f"For 'hal.is_initialized', the argument 'device_target' must be one of "
f"{valid_targets}, but got {device_target}.")
_device_context = _device_context_mgr.get_device_context(device_target)
if _device_context is None:
logger.info(f"Backend {device_target} is not created yet.")
return False
return _device_context.initialized()
[文档]def is_available(device_target):
"""
Returns whether specified backend is available.
All dependent libraries should be successfully loaded if this backend is available.
Args:
device_target (str): The device name of backend, should be one of "CPU", "GPU" and "Ascend".
Returns:
Bool, whether the specified backend is available for this MindSpore package.
Examples:
>>> import mindspore as ms
>>> device_target = ms.context.get_context("device_target")
>>> print(ms.hal.is_available(device_target))
True
"""
if device_target not in valid_targets:
raise ValueError(f"For 'hal.is_available', the argument 'device_target' must be one of "
f"{valid_targets}, but got {device_target}.")
# MindSpore will try to load plugins in "import mindspore", and availability status will be stored.
if not _context_handle.is_pkg_support_device(device_target):
logger.warning(f"Backend {device_target} is not available.")
load_plugin_error = _context_handle.load_plugin_error()
if load_plugin_error != "":
logger.warning(f"Here's error when loading plugin for MindSpore package."
f"Error message: {load_plugin_error}")
return False
return True
[文档]@_check_inputs_validation
def device_count(device_target=None):
"""
Returns device count of specified backend.
Note:
If `device_target` is not specified, get the device count of the current backend set by context.
For CPU backend, this method always returns 1.
Args:
device_target (str, optional): The device name of backend, should be one of "CPU", "GPU" and "Ascend".
Returns:
int.
Examples:
>>> import mindspore as ms
>>> device_target = ms.context.get_context("device_target")
>>> print(ms.hal.device_count(device_target))
"""
hal_instance = hal_instances.get(device_target)
if hal_instance is None:
raise RuntimeError(f"device_target {device_target} not exist.")
return hal_instance.device_count()
[文档]@_check_device_id
@_check_inputs_validation
def get_device_capability(device_id, device_target=None):
"""
Get specified device's capability.
Note:
If `device_target` is not specified, get the device capability of the current backend set by context.
Args:
device_id (int): The device id of which the capability will be returned.
device_target (str, optional): The device name of backend, should be one of "CPU", "GPU" and "Ascend".
Returns:
tuple(int, int) for GPU.
- param1 - int, cuda major revision number.
- param2 - int, cuda minor revision number.
None for Ascend and CPU.
Examples:
>>> import mindspore as ms
>>> device_target = ms.context.get_context("device_target")
>>> print(ms.hal.get_device_capability(0, device_target))
"""
hal_instance = hal_instances.get(device_target)
if hal_instance is None:
raise RuntimeError(f"device_target {device_target} not exist.")
return hal_instance.get_device_capability(device_id)
[文档]@_check_device_id
@_check_inputs_validation
def get_device_properties(device_id, device_target=None):
"""
Get specified device's properties.
Note:
If `device_target` is not specified, get the device properties of the current backend set by context.
For Ascend, backend must be initialized before calling this method,
or `total_memory` and `free_memory` will be 0,
and `device_id` will be ignored since this method only returns current device's properties.
Args:
device_id (int): The device id of which the properties will be returned.
device_target (str, optional): The device name of backend, should be one of "CPU", "GPU" and "Ascend".
Returns:
- `cudaDeviceProp` for GPU.
.. code-block::
cudaDeviceProp {
name(str),
major(int),
minor(int),
is_multi_gpu_board(int),
is_integrated(int),
multi_processor_count(int),
total_memory(int),
warp_size(int)
}
- `AscendDeviceProperties` for Ascend.
.. code-block::
AscendDeviceProperties {
name(str),
total_memory(int),
free_memory(int)
}
- None for CPU.
Examples:
>>> import mindspore as ms
>>> device_target = ms.context.get_context("device_target")
>>> print(ms.hal.get_device_properties(0, device_target))
"""
hal_instance = hal_instances.get(device_target)
if hal_instance is None:
raise RuntimeError(f"device_target {device_target} not exist.")
return hal_instance.get_device_properties(device_id)
[文档]@_check_device_id
@_check_inputs_validation
def get_device_name(device_id, device_target=None):
"""
Get specified device's name.
Note:
If `device_target` is not specified, get the device name of the current backend set by context.
This method always returns "CPU" for CPU backend.
Args:
device_id (int): The device id of which the name will be returned.
device_target (str, optional): The device name of backend, should be one of "CPU", "GPU" and "Ascend".
Returns:
str.
Examples:
>>> import mindspore as ms
>>> device_target = ms.context.get_context("device_target")
>>> print(ms.hal.get_device_name(0, device_target))
"""
hal_instance = hal_instances.get(device_target)
if hal_instance is None:
raise RuntimeError(f"device_target {device_target} not exist.")
return hal_instance.get_device_name(device_id)
[文档]@_check_inputs_validation
def get_arch_list(device_target=None):
"""
Get the architecture list this MindSpore was compiled for.
Note:
If `device_target` is not specified, get the device name of the current backend set by context.
Args:
device_target (str, optional): The device name of backend, should be one of "CPU", "GPU" and "Ascend".
Returns:
str for GPU.
None for Ascend and CPU.
Examples:
>>> import mindspore as ms
>>> device_target = ms.context.get_context("device_target")
>>> print(ms.hal.get_arch_list(device_target))
"""
hal_instance = hal_instances.get(device_target)
if hal_instance is None:
raise RuntimeError(f"device_target {device_target} not exist.")
return hal_instance.get_arch_list()