文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.scipy.linalg.block_diag

mindspore.scipy.linalg.block_diag(*arrs)[源代码]

Create a block diagonal matrix from provided arrays.

Given the list of Tensors A, B, and C, the output will have these Tensors arranged on the diagonal:

[[A, 0, 0],
 [0, B, 0],
 [0, 0, C]]

说明

block_diag is not supported on Windows platform yet.

参数

arrs (list) – up to 2-D Input Tensors. A 1-D Tensor or a 2-D Tensor with shape (1,n).

返回

Tensor with A, B, C, … on the diagonal which has the same dtype as A.

异常

ValueError – If there are Tensors with dimensions higher than 2 in all arguments.

Supported Platforms:

GPU CPU

样例

>>> import numpy as onp
>>> from mindspore import Tensor
>>> from mindspore.scipy.linalg import block_diag
>>> A = Tensor(onp.array([[1, 0], [0, 1]]))
>>> B = Tensor(onp.array([[3, 4, 5], [6, 7, 8]]))
>>> C = Tensor(onp.array([[7]]))
>>> P = Tensor(onp.zeros((2, ), dtype='int32'))
>>> print(block_diag(A, B, C))
[[1 0 0 0 0 0]
 [0 1 0 0 0 0]
 [0 0 3 4 5 0]
 [0 0 6 7 8 0]
 [0 0 0 0 0 7]]
>>> print(block_diag(A, P, B, C))
[[1 0 0 0 0 0 0 0]
 [0 1 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0]
 [0 0 0 0 3 4 5 0]
 [0 0 0 0 6 7 8 0]
 [0 0 0 0 0 0 0 7]]