文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.scipy.sparse.linalg.gmres

mindspore.scipy.sparse.linalg.gmres(A, b, x0=None, *, tol=1e-05, restart=20, maxiter=None, M=None, callback=None, restrt=None, atol=0.0, callback_type=None, solve_method='batched')[源代码]

Given given A and b, GMRES solves the linear system:

Ax=b

A is specified as a function performing A(vi) -> vf = A @ vi, and in principle need not have any particular special properties, such as symmetry. However, convergence is often slow for nearly symmetric operators.

Note

  • gmres is not supported on Windows platform yet.

Parameters
  • A (Union[Tensor, function]) – 2D Tensor or function that calculates the linear map (matrix-vector product) Ax when called like A(x). As function, A must return Tensor with the same structure and shape as its input matrix.

  • b (Tensor) – Right hand side of the linear system representing a single vector. Can be stored as a Tensor.

  • x0 (Tensor, optional) – Starting guess for the solution. Must have the same structure as b. If this is unspecified, zeroes are used. Default: None.

  • tol (float, optional) – Tolerances for convergence, norm(residual)<=max(tolnorm(b),atol). We do not implement SciPy’s “legacy” behavior, so MindSpore’s tolerance will differ from SciPy unless you explicitly pass atol to SciPy’s gmres. Default: 1e-5.

  • restart (integer, optional) – Size of the Krylov subspace (“number of iterations”) built between restarts. GMRES works by approximating the true solution x as its projection into a Krylov space of this dimension - this parameter therefore bounds the maximum accuracy achievable from any guess solution. Larger values increase both number of iterations and iteration cost, but may be necessary for convergence. The algorithm terminates early if convergence is achieved before the full subspace is built. Default: 20.

  • maxiter (int) – Maximum number of times to rebuild the size-restart Krylov space starting from the solution found at the last iteration. If GMRES halts or is very slow, decreasing this parameter may help. Default: None.

  • M (Union[Tensor, function]) – Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. Default: None.

  • callback (function) – User-supplied function to call after each iteration. It is called as callback(args), where args are selected by callback_type. Default: None.

  • restrt (int, optional) – Deprecated, use restart instead. Default: None.

  • atol (float, optional) – The same as tol. Default: 0.0.

  • callback_type (str, optional) –

    Callback function argument requested: Default: None.

    • x: current iterate (ndarray), called on every restart

    • pr_norm: relative (preconditioned) residual norm (float), called on every inner iteration

    • legacy (default): same as pr_norm, but also changes the meaning of ‘maxiter’ to count inner iterations instead of restart cycles.

  • solve_method (str) –

    There are two kinds of solve methods,’incremental’ or ‘batched’. Default: “batched”.

    • incremental: builds a QR decomposition for the Krylov subspace incrementally during the GMRES process using Givens rotations. This improves numerical stability and gives a free estimate of the residual norm that allows for early termination within a single “restart”.

    • batched: solve the least squares problem from scratch at the end of each GMRES iteration. It does not allow for early termination, but has much less overhead on GPUs.

Returns

  • Tensor, the converged solution. Has the same structure as b.

  • Tensor, placeholder for convergence information: 0 : successful exit. >0 : convergence to tolerance not achieved, number of iterations. <0 : illegal input or breakdown.

Supported Platforms:

CPU GPU

Examples

>>> import numpy as onp
>>> import mindspore.numpy as mnp
>>> from mindspore.common import Tensor
>>> from mindspore.scipy.sparse.linalg import gmres
>>> A = Tensor(mnp.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=mnp.float32))
>>> b = Tensor(mnp.array([2, 4, -1], dtype=mnp.float32))
>>> x, exitCode = gmres(A, b)
>>> print(exitCode)            # 0 indicates successful convergence
0
>>> print(onp.allclose(mnp.dot(A,x).asnumpy(), b.asnumpy()))
True