文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.scipy.sparse.linalg.cg

mindspore.scipy.sparse.linalg.cg(A, b, x0=None, *, tol=1e-05, atol=0.0, maxiter=None, M=None, callback=None)[源代码]

Use Conjugate Gradient iteration to solve the linear system:

Ax=b

The numerics of MindSpore’s cg should exact match SciPy’s cg (up to numerical precision).

Derivatives of cg are implemented via implicit differentiation with another cg solve, rather than by differentiating through the solver. They will be accurate only if both solves converge.

Note

  • Input A must represent a hermitian, positive definite matrix. If not, the output is wrong and inconsistent with scipy.

  • cg is not supported on Windows platform yet.

  • Currently, when A is a CSRTensor, the derivatives of cg is not supported on PyNative mode.

Parameters
  • A (Union[Tensor, CSRTensor, function]) – 2D Tensor, CSRTensor or function that calculates the linear map (matrix-vector product) Ax when called like A(x). As function, A must return Tensor with the same structure and shape as its input matrix.

  • b (Tensor) – Right hand side of the linear system representing a single vector. Can be stored as a Tensor.

  • x0 (Tensor) – Starting guess for the solution. Must have the same structure as b. Default: None.

  • tol (float, optional) – Tolerances for convergence, norm(residual)<=max(tolnorm(b),atol). We do not implement SciPy’s “legacy” behavior, so MindSpore’s tolerance will differ from SciPy unless you explicitly pass atol to SciPy’s cg. Default: 1e-5.

  • atol (float, optional) – The same as tol. Default: 0.0.

  • maxiter (int) – Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. Default: None.

  • M (Union[Tensor, CSRTensor, function]) – Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. Default: None.

  • callback (function, optional) – User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector. Default: None.

Returns

  • Tensor, the converged solution. Has the same structure as b.

  • Tensor, placeholder for convergence information: 0 : successful exit. >0 : convergence to tolerance not achieved, number of iterations. <0 : illegal input or breakdown.

Raises
  • TypeError – If tol is not float.

  • TypeError – If atol is not float.

  • TypeError – If maxiter is not int.

  • ValueError – If callback is not None.

  • TypeError – If A is not Tensor, CSRTensor, or Function.

  • TypeError – If M is not None, Tensor, CSRTensor, or Function.

  • TypeError – If b is not Tensor.

  • TypeError – If x0 is not None or Tensor.

  • ValueError – If b is not 1 or 2 dimension.

  • ValueError – If x0 and b don’t have the same structure and type.

  • ValueError – If A is a square matrix.

  • ValueError – If M is a square matrix when M is not a function.

  • TypeError – If A and b don’t have the same data types.

Supported Platforms:

CPU GPU

Examples

>>> import numpy as onp
>>> from mindspore.common import Tensor
>>> from mindspore.scipy.sparse.linalg import cg
>>> A = Tensor(onp.array([[1, 2], [2, 1]], dtype='float32'))
>>> b = Tensor(onp.array([1, -1], dtype='float32'))
>>> result, info = cg(A, b)
>>> print(result)
[-1.  1.]
>>> print(info)
0