文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.HuberLoss

class mindspore.nn.HuberLoss(reduction='mean', delta=1.0)[源代码]

HuberLoss计算预测值和目标值之间的误差。它兼有L1Loss和MSELoss的优点。

假设 xy 为一维Tensor,长度 N ,则计算 xy 的loss而不进行降维操作(即reduction参数设置为”none”)。公式如下:

(x,y)=L={l1,,lN}

以及

ln={0.5(xnyn)2,if |xnyn|<delta;delta(|xnyn|0.5delta),otherwise. 

其中, N 为batch size。如果 reduction 不是”none”,则:

(x,y)={mean(L),if reduction="mean";sum(L),if reduction="sum".
参数:
  • reduction (str) - 应用于loss的reduction类型。取值为”mean”,”sum”,或”none”。默认值:”mean”。如果 reduction 为”mean”或”sum”,则输出一个标量Tensor;如果 reduction 为”none”,则输出Tensor的shape为广播后的shape。

  • delta (Union[int, float]) - 两种损失之间变化的阈值。该值必须为正。默认值:1.0。

输入:
  • logits (Tensor) - 输入预测值,任意维度的Tensor。其数据类型为float16或float32。

  • labels (Tensor) - 目标值,通常情况下与 logits 的shape和dtype相同。但是如果 logitslabels 的shape不同,需要保证他们之间可以互相广播。

输出:

Tensor或Scalar,如果 reduction 为”none”,返回与 logits 具有相同shape和dtype的Tensor。否则,将返回一个Scalar。

异常:
  • TypeError - logitslabels 的数据类型既不是float16也不是float32。

  • TypeError - logitslabels 的数据类型不同。

  • TypeError - delta 不是float或int。

  • ValueError - delta 的值小于或等于0。

  • ValueError - reduction 不为”mean”、”sum”或”none”。

  • ValueError - logitslabels 有不同的shape,且不能互相广播。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> # Case 1: logits.shape = labels.shape = (3,)
>>> loss = nn.HuberLoss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.16666667
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = nn.HuberLoss(reduction="none")
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[[0.  0.5 1.5]
 [0.  0.  0.5]]