比较与tf.train.ProximalAdagradOptimizer的功能差异
tf.train.ProximalAdagradOptimizer
tf.train.ProximalAdagradOptimizer(
learning_rate, initial_accumulator_value=0.1, l1_regularization_strength=0.0,
l2_regularization_strength=0.0, use_locking=False, name='ProximalAdagrad'
)
mindspore.nn.ProximalAdagrad
mindspore.nn.ProximalAdagrad(
params, accum=0.1, learning_rate=0.001, l1=0.0, l2=0.0,
use_locking=False, loss_scale=1.0, weight_decay=0.0)
更多内容详见mindspore.nn.ProximalAdagrad。
使用方式
一般使用场景:
MindSpore:一般情况下,在实例化一个优化器子类之后,将其作为
mindspore.model
高阶API的入参参与训练,用法请参考代码示例;或使用mindspore.nn.TrainOneStepCell
,通过传入优化器和一个mindspore.nn.WithLossCell
的实例,自定义训练网络,具体实现方式可以参考官网教程。TensorFlow:一般情况下,在实例化一个优化器子类之后,将其作为
tf.keras.models.Model
高阶API的入参参与训练;或调用minimize()
(包含compute_gradients()
和apply_gradients()
)方法单步执行。
其他功能差异:
参数分组:MindSpore提供参数分组功能,且支持为不同参数组设置不同配置值,通过入参
params
传入参数组字典实现,mindspore.nn.ProximalAdagrad
支持参数分组;TensorFlow没有此入参配置。动态学习率:MindSpore支持动态学习率,分别在
nn.dynamic_lr
和nn.learning_rate_schedule
模块中有不同的实现方法,mindspore.nn.ProximalAdagrad
支持动态学习率;TensorFlow也支持此功能,学习率设置封装在tf.train
模块中,tf.train.ProximalAdagradOptimizer
支持动态学习率。权重衰减和混合精度:MindSpore的
mindspore.nn.Optimizer
基类支持通过配置入参weight_decay
和loss_scale
来进行权重衰减及混合精度设置;TensorFlow的优化器没有相关入参配置,但提供了tf.keras.regularizers
和tf.keras.mixed_precision
模块提供相似的功能,配合优化器使用。
代码示例
MindSpore:
# The following implements ProximalAdagrad with MindSpore.
import mindspore.nn as nn
import mindspore as ms
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, 3)
self.bn = nn.BatchNorm2d(64)
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
return x
net = Net()
# 1) All parameters use the same learning rate and weight decay
optim = nn.ProximalAdagrad(params=net.trainable_params())
# 2) Use parameter groups and set different values
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
group_params = [{'params': conv_params, 'weight_decay': 0.01, 'grad_centralization':True},
{'params': no_conv_params, 'lr': 0.01},
{'order_params': net.trainable_params()}]
optim = nn.ProximalAdagrad(group_params, learning_rate=0.1, weight_decay=0.0)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
model = ms.Model(net, loss_fn=loss, optimizer=optim, metrics={"accuracy"})
TensorFlow:
以下训练输出结果具有随机性。
# The following implements ProximalAdagrad with tensorflow.
import tensorflow as tf
from tensorflow.keras import layers
tf.enable_eager_execution()
# build model and instantiate ProximalAdagrad optimizer
model = tf.keras.Sequential()
model.add(layers.Dense(1, kernel_initializer='uniform', input_shape=(3,)))
model.add(layers.Activation('relu'))
inputs = tf.constant([[1., 2., 3.], [3., 4., 5.]], dtype=tf.float32)
outputs = tf.constant([[0.5], [0.6]], dtype=tf.float32)
optim = tf.train.ProximalAdagradOptimizer(learning_rate=0.01)
loss = tf.keras.losses.MeanSquaredError()
model.compile(optimizer=optim, loss=loss)
model.fit(inputs, outputs)
# out: Train on 2 samples
# 2/2 [==============================] - 0s 16ms/sample - loss: 0.0596