迁移脚本

下载Notebook下载样例代码查看源文件

概述

本文档主要介绍,怎样将网络脚本从TensorFlow或PyTorch框架迁移至MindSpore。

TensorFlow脚本迁移MindSpore

通过读TensorBoard图,进行脚本迁移。

  1. 以TensorFlow实现的PoseNet为例,演示如何利用TensorBoard读图,编写MindSpore代码,将TensorFlow模型迁移到MindSpore上。

    此处提到的PoseNet代码为基于Python2的代码,需要对Python3做一些语法更改才能在Python3上运行,具体修改内容不予赘述。

  2. 改写代码,利用tf.summary接口,保存TensorBoard需要的log,并启动TensorBoard。

  3. 打开的TensorBoard如图所示,图例仅供参考,可能因log生成方式的差异,TensorBoard展示的图也有所差异。

    PoseNet TensorBoard

  4. 找到3个输入的Placeholder,通过看图并阅读代码得知,第二、第三个输入都只在计算loss时使用。

    PoseNet Placeholder

    PoseNet Placeholder-1 Placeholder-2

    PoseNet script input1 2 3

    至此,我们可以初步划分出,构造网络模型三步:

    第一步,在网络的三个输入中,第一个输入将在backbone中计算出六个输出;

    第二步,上一步结果与第二、第三个输入在loss子网中计算loss;

    第三步,利用TrainOneStepCell自动微分构造反向网络;利用TensorFlow工程中提供的Adam优化器及属性,写出对应的MindSpore优化器来更新参数,网络脚本骨干可写作:

[1]:
from mindspore import nn
from mindspore.nn import TrainOneStepCell
from mindspore.nn import Adam
from mindspore.common.initializer import Normal

# combine backbone and loss
class PoseNetLossCell(nn.Cell):
    def __init__(self, backbone, loss):
        super(PoseNetLossCell, self).__init__()
        self.pose_net = backbone
        self.loss = loss
    def construct(self, input_1, input_2, input_3):
        p1_x, p1_q, p2_x, p2_q, p3_x, p3_q = self.poss_net(input_1)
        loss = self.loss(p1_x, p1_q, p2_x, p2_q, p3_x, p3_q, input_2, input_3)
        return loss

# define backbone
class PoseNet(nn.Cell):
    def __init__(self):
        super(PoseNet, self).__init__()
        self.fc = nn.Dense(1, 6, Normal(0.02), Normal(0.02))

    def construct(self, input_1):
        """do something with input_1, output num 6"""
        p1_x, p1_q, p2_x, p2_q, p3_x, p3_q = self.fc(input_1)
        return p1_x, p1_q, p2_x, p2_q, p3_x, p3_q

# define loss
class PoseNetLoss(nn.Cell):
    def __init__(self):
        super(PoseNetLoss, self).__init__()

    def construct(self, p1_x, p1_q, p2_x, p2_q, p3_x, p3_q, poses_x, poses_q):
        """do something to calc loss"""
        return loss

# define network
backbone = PoseNet()
loss = PoseNetLoss()
net_with_loss = PoseNetLossCell(backbone, loss)
opt = Adam(net_with_loss.trainable_params(), learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-08, use_locking=False)
net_with_grad = TrainOneStepCell(net_with_loss, opt)
  1. 接下来,我们来具体实现backbone中的计算逻辑。

第一个输入首先经过了一个名为conv1的子图,通过看图可得,其中计算逻辑为:

PoseNet conv1 子图

输入->Conv2D->BiasAdd->ReLU,虽然图上看起来,BiasAdd后的算子名虽然为conv1,但其实际执行的是ReLU。

PoseNet Conv1 conv1 relu

这样一来,第一个子图conv1,可以定义如下,具体参数,与原工程中的参数对齐:

class Conv1(nn.Cell):
    def __init__(self):
        super(Conv1, self).__init__()
        self.conv = Conv2d()
        self.relu = ReLU()
    def construct(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

通过观察TensorBoard图和代码,我们不难发现,原TensorFlow工程中定义的conv这一类型的子网,可以复写为MindSpore的子网,减少重复代码。

TensorFlow工程conv子网定义:

def conv(self, input, k_h, k_w, c_o, s_h, s_w, name, relu=True, padding=DEFAULT_PADDING, group=1, biased=True):
    # Verify that the padding is acceptable
    self.validate_padding(padding)
    # Get the number of channels in the input
    c_i = input.get_shape()[-1]
    # Verify that the grouping parameter is valid
    assert c_i % group == 0
    assert c_o % group == 0
    # Convolution for a given input and kernel
    convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
    with tf.variable_scope(name) as scope:
        kernel = self.make_var('weights', shape=[k_h, k_w, c_i / group, c_o])
        if group == 1:
            # This is the common-case. Convolve the input without any further complications.
            output = convolve(input, kernel)
        else:
            # Split the input into groups and then convolve each of them independently
            input_groups = tf.split(3, group, input)
            kernel_groups = tf.split(3, group, kernel)
            output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]
            # Concatenate the groups
            output = tf.concat(3, output_groups)
        # Add the biases
        if biased:
            biases = self.make_var('biases', [c_o])
            output = tf.nn.bias_add(output, biases)
        if relu:
            # ReLU non-linearity
            output = tf.nn.relu(output, name=scope.name)
        return output

则对应MindSpore子网定义如下:

[2]:
from mindspore import nn
from mindspore.nn import Conv2d, ReLU
class ConvReLU(nn.Cell):
    def __init__(self, channel_in, kernel_size, channel_out, strides):
        super(ConvReLU, self).__init__()
        self.conv = Conv2d(channel_in, channel_out, kernel_size, strides, has_bias=True)
        self.relu = ReLU()

    def construct(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

那么,对照着TensorBoard中的数据流向与算子属性,backbone计算逻辑可编写如下:

from mindspore.nn import MaxPool2d
import mindspore.ops as ops


class LRN(nn.Cell):
    def __init__(self, radius, alpha, beta, bias=1.0):
        super(LRN, self).__init__()
        self.lrn = ops.LRN(radius, bias, alpha, beta)
    def construct(self, x):
        return self.lrn(x)


class PoseNet(nn.Cell):
    def __init__(self):
        super(PoseNet, self).__init__()
        self.conv1 = ConvReLU(3, 7, 64, 2)
        self.pool1 = MaxPool2d(3, 2, pad_mode="SAME")
        self.norm1 = LRN(2, 2e-05, 0.75)
        self.reduction2 = ConvReLU(64, 1, 64, 1)
        self.conv2 = ConvReLU(64, 3, 192, 1)
        self.norm2 = LRN(2, 2e-05, 0.75)
        self.pool2 = MaxPool2d(3, 2, pad_mode="SAME")
        self.icp1_reduction1 = ConvReLU(192, 1, 96, 1)
        self.icp1_out1 = ConvReLU(96, 3, 128, 1)
        self.icp1_reduction2 = ConvReLU(192, 1, 16, 1)
        self.icp1_out2 = ConvReLU(16, 5, 32, 1)
        self.icp1_pool = MaxPool2d(3, 1, pad_mode="SAME")
        self.icp1_out3 = ConvReLU(192, 5, 32, 1)
        self.icp1_out0 = ConvReLU(192, 1, 64, 1)
        self.concat = ops.Concat(axis=1)
        self.icp2_reduction1 = ConvReLU(256, 1, 128, 1)
        self.icp2_out1 = ConvReLU(128, 3, 192, 1)
        self.icp2_reduction2 = ConvReLU(256, 1, 32, 1)
        self.icp2_out2 = ConvReLU(32, 5, 96, 1)
        self.icp2_pool = MaxPool2d(3, 1, pad_mode="SAME")
        self.icp2_out3 = ConvReLU(256, 1, 64, 1)
        self.icp2_out0 = ConvReLU(256, 1, 128, 1)
        self.icp3_in = MaxPool2d(3, 2, pad_mode="SAME")
        self.icp3_reduction1 = ConvReLU(480, 1, 96, 1)
        self.icp3_out1 = ConvReLU(96, 3, 208, 1)
        self.icp3_reduction2 = ConvReLU(480, 1, 16, 1)
        self.icp3_out2 = ConvReLU(16, 5, 48, 1)
        self.icp3_pool = MaxPool2d(3, 1, pad_mode="SAME")
        self.icp3_out3 = ConvReLU(480, 1, 64, 1)
        self.icp3_out0 = ConvReLU(480, 1, 192, 1)
        """etc"""
        """..."""

    def construct(self, input_1):
        """do something with input_1, output num 6"""
        x = self.conv1(input_1)
        x = self.pool1(x)
        x = self.norm1(x)
        x = self.reduction2(x)
        x = self.conv2(x)
        x = self.norm2(x)
        x = self.pool2(x)
        pool2 = x
        x = self.icp1_reduction1(x)
        x = self.icp1_out1(x)
        icp1_out1 = x

        icp1_reduction2 = self.icp1_reduction2(pool2)
        icp1_out2 = self.icp1_out2(icp1_reduction2)

        icp1_pool = self.icp1_pool(pool2)
        icp1_out3 = self.icp1_out3(icp1_pool)

        icp1_out0 = self.icp1_out0(pool2)

        icp2_in = self.concat((icp1_out0, icp1_out1, icp1_out2, icp1_out3))
        """etc"""
        """..."""

        return p1_x, p1_q, p2_x, p2_q, p3_x, p3_q

相应的,loss计算逻辑可编写如下:

[3]:
from mindspore import ops

class PoseNetLoss(nn.Cell):
    def __init__(self):
        super(PoseNetLoss, self).__init__()
        self.sub = ops.Sub()
        self.square = ops.Square()
        self.reduce_sum = ops.ReduceSum()
        self.sqrt = ops.Sqrt()

    def construct(self, p1_x, p1_q, p2_x, p2_q, p3_x, p3_q, poses_x, poses_q):
        """do something to calc loss"""
        l1_x = self.sqrt(self.reduce_sum(self.square(self.sub(p1_x, poses_x)))) * 0.3
        l1_q = self.sqrt(self.reduce_sum(self.square(self.sub(p1_q, poses_q)))) * 150
        l2_x = self.sqrt(self.reduce_sum(self.square(self.sub(p2_x, poses_x)))) * 0.3
        l2_q = self.sqrt(self.reduce_sum(self.square(self.sub(p2_q, poses_q)))) * 150
        l3_x = self.sqrt(self.reduce_sum(self.square(self.sub(p3_x, poses_x)))) * 1
        l3_q = self.sqrt(self.reduce_sum(self.square(self.sub(p3_q, poses_q)))) * 500
        return l1_x + l1_q + l2_x + l2_q + l3_x + l3_q

最终,你的训练脚本应该类似如下所示:

import mindspore as ms
from mindspore import dataset as ds
import numpy as np

if __name__ == "__main__":
    epoch_size = 5
    backbone = PoseNet()
    loss = PoseNetLoss()
    net_with_loss = PoseNetLossCell(backbone, loss)
    opt = Adam(net_with_loss.trainable_params(), learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-08, use_locking=False)
    net_with_grad = TrainOneStepCell(net_with_loss, opt)
    """dataset define"""
    model = ms.Model(net_with_grad)
    model.train(epoch_size, dataset)

这样,就基本完成了模型脚本从TensorFlow到MindSpore的迁移,接下来就是利用丰富的MindSpore工具和计算策略,对精度进行调优,在此不予详述。

PyTorch脚本迁移MindSpore

通过读PyTorch脚本,直接进行迁移。

  1. PyTorch子网模块通常继承torch.nn.Module,MindSpore通常继承mindspore.nn.Cell;PyTorch子网模块正向计算逻辑需要重写forward方法,MindSpore子网模块正向计算逻辑需要重写construct方法。

  2. 以常见的Bottleneck类在MindSpore下的迁移为例。

PyTorch工程代码

# defined in PyTorch
class Bottleneck(nn.Module):
    def __init__(self, inplanes, planes, stride=1, mode='NORM', k=1, dilation=1):
        super(Bottleneck, self).__init__()
        self.mode = mode
        self.relu = nn.ReLU(inplace=True)
        self.k = k

        btnk_ch = planes // 4
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.conv1 = nn.Conv2d(inplanes, btnk_ch, kernel_size=1, bias=False)

        self.bn2 = nn.BatchNorm2d(btnk_ch)
        self.conv2 = nn.Conv2d(btnk_ch, btnk_ch, kernel_size=3, stride=stride, padding=dilation,
                                dilation=dilation, bias=False)

        self.bn3 = nn.BatchNorm2d(btnk_ch)
        self.conv3 = nn.Conv2d(btnk_ch, planes, kernel_size=1, bias=False)

        if mode == 'UP':
            self.shortcut = None
        elif inplanes != planes or stride > 1:
            self.shortcut = nn.Sequential(
                nn.BatchNorm2d(inplanes),
                self.relu,
                nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
            )
        else:
            self.shortcut = None

    def _pre_act_forward(self, x):
        residual = x

        out = self.bn1(x)
        out = self.relu(out)
        out = self.conv1(out)

        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv2(out)

        out = self.bn3(out)
        out = self.relu(out)
        out = self.conv3(out)

        if self.mode == 'UP':
            residual = self.squeeze_idt(x)
        elif self.shortcut is not None:
            residual = self.shortcut(residual)

        out += residual

        return out

    def squeeze_idt(self, idt):
        n, c, h, w = idt.size()
        return idt.view(n, c // self.k, self.k, h, w).sum(2)

    def forward(self, x):
        out = self._pre_act_forward(x)
        return out

根据PyTorch和MindSpore对卷积参数定义的区别,可以翻译成如下定义:

from mindspore import nn
import mindspore.ops as ops

# defined in MindSpore
class Bottleneck(nn.Cell):
    def __init__(self, inplanes, planes, stride=1, k=1, dilation=1):
        super(Bottleneck, self).__init__()
        self.mode = mode
        self.relu = nn.ReLU()
        self.k = k

        btnk_ch = planes // 4
        self.bn1 = nn.BatchNorm2d(num_features=inplanes, momentum=0.9)
        self.conv1 = nn.Conv2d(in_channels=inplanes, out_channels=btnk_ch, kernel_size=1, pad_mode='pad', has_bias=False)

        self.bn2 = nn.BatchNorm2d(num_features=btnk_ch, momentum=0.9)
        self.conv2 = nn.Conv2d(in_channels=btnk_ch, out_channels=btnk_ch, kernel_size=3, stride=stride, pad_mode='pad', padding=dilation, dilation=dilation, has_bias=False)

        self.bn3 = nn.BatchNorm2d(num_features=btnk_ch, momentum=0.9)
        self.conv3 = nn.Conv2d(in_channels=btnk_ch, out_channels=planes, kernel_size=1, pad_mode='pad', has_bias=False)

        self.shape = ops.Shape()
        self.reshape = ops.Reshape()
        self.reduce_sum = ops.ReduceSum()

        if mode == 'UP':
            self.shortcut = None
        elif inplanes != planes or stride > 1:
            self.shortcut = nn.SequentialCell([
                nn.BatchNorm2d(num_features=inplanes, momentum=0.9),
                nn.ReLU(),
                nn.Conv2d(in_channels=inplanes, out_channels=planes, kernel_size=1, stride=stride, pad_mode='pad', has_bias=False)])
        else:
            self.shortcut = None

    def _pre_act_forward(self, x):
        residual = x

        out = self.bn1(x)
        out = self.relu(out)
        out = self.conv1(out)

        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv2(out)

        out = self.bn3(out)
        out = self.relu(out)
        out = self.conv3(out)

        if self.shortcut is not None:
            residual = self.shortcut(residual)

        out += residual
        return out

    def construct(self, x):
        out = self._pre_act_forward(x)
        return out
  1. PyTorch的反向传播通常使用loss.backward()实现,参数更新通过optimizer.step()实现,在MindSpore中,这些不需要用户显式调用执行,可以交给TrainOneStepCell类进行反向传播和梯度更新。最后,训练脚本结构应如下所示:

# define dataset
dataset = ...

# define backbone and loss
backbone = Net()
loss = NetLoss()

# combine backbone and loss
net_with_loss = WithLossCell(backbone, loss)

# define optimizer
opt = ...

# combine forward and backward
net_with_grad = TrainOneStepCell(net_with_loss, opt)

# define model and train
model = ms.Model(net_with_grad)
model.train(epoch_size, dataset)

PyTorch和mindspore在一些基础API的定义上比较相似,比如mindspore.nn.SequentialCelltorch.nn.Sequential,另外,一些算子API可能不尽相同,此处列举一些常见的API对照,更多信息可以参考MindSpore官网的MindSpore与PyTorch对照表

PyTorch

MindSpore

tensor.view()

mindspore.ops.operations.Reshape()(tensor)

tensor.size()

mindspore.ops.operations.Shape()(tensor)

tensor.sum(axis)

mindspore.ops.operations.ReduceSum()(tensor, axis)

torch.nn.Upsample[mode: nearest]

mindspore.ops.operations.ResizeNearestNeighbor

torch.nn.Upsample[mode: bilinear]

mindspore.ops.operations.ResizeBilinear

torch.nn.Linear

mindspore.nn.Dense

torch.nn.PixelShuffle

mindspore.ops.operations.DepthToSpace

值得注意的是,尽管torch.nn.MaxPool2dmindspore.nn.MaxPool2d在接口定义上较为相似,但在Ascend上的训练过程中,MindSpore实际调用了MaxPoolWithArgMax算子,该算子与TensorFlow的同名算子功能相同,在迁移过程中MaxPool层后的输出MindSpore与PyTorch不一致是正常现象,理论上不影响最终训练结果。