文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.scipy.linalg.eigh

mindspore.scipy.linalg.eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True)[源代码]

Solve a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.

Find eigenvalues Tensor w and optionally eigenvectors Tensor v of Tensor a, where b is positive definite such that for every eigenvalue λ (i-th entry of w) and its eigenvector vi (i-th column of v) satisfies:

              a @ vi = λ * b @ vi
vi.conj().T @ a @ vi = λ
vi.conj().T @ b @ vi = 1

In the standard problem, b is assumed to be the identity matrix.

Note

  • eigh is not supported on Windows platform yet.

  • Only float32, float64, int32, int64 are supported Tensor dtypes. If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64.

Parameters
  • a (Tensor) – A (M,M) complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed.

  • b (Tensor, optional) – A (M,M) complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed. Default: None.

  • lower (bool, optional) – Whether the pertinent Tensor data is taken from the lower or upper triangle of a and, if applicable, b. Default: True.

  • eigvals_only (bool, optional) – Whether to calculate only eigenvalues and no eigenvectors. Default: False.

  • type (int, optional) –

    For the generalized problems, this keyword specifies the problem type to be solved for w and v (only takes 1, 2, 3 as possible inputs):

    1 =>     a @ v = w @ b @ v
    2 => a @ b @ v = w @ v
    3 => b @ a @ v = w @ v
    

    This keyword is ignored for standard problems. Default: 1.

  • overwrite_a (bool, optional) – Whether to overwrite data in a (may improve performance). Default: False.

  • overwrite_b (bool, optional) – Whether to overwrite data in b (may improve performance). Default: False.

  • check_finite (bool, optional) – Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True.

  • turbo (bool, optional) – use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if full set of eigenvalues are requested.). Has no significant effect if eigenvectors are not requested. Default: True.

  • eigvals (tuple, optional) – Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: 0<=lo<=hi<=M1. If omitted, all eigenvalues and eigenvectors are returned. Default: None.

Returns

  • Tensor with shape (N,), the N(1<=N<=M) selected eigenvalues, in ascending order, each repeated according to its multiplicity.

  • Tensor with shape (M,N), (if eigvals_only == False)

Raises
  • RuntimeError – If eigenvalue computation does not converge, an error occurred, or b matrix is not definite positive. Note that if input matrices are not symmetric or Hermitian, no error will be reported but results will be wrong.

  • TypeError – If a is not Tensor.

  • TypeError – If lower is not bool.

  • TypeError – If eigvals_only is not bool.

  • TypeError – If overwrite_a is not bool.

  • TypeError – If overwrite_b is not bool.

  • TypeError – If turbo is not bool.

  • TypeError – If check_finite is not bool.

  • ValueError – If a is not square matrix.

  • ValueError – If b is not None.

  • ValueError – If eigvals is not None.

Supported Platforms:

CPU GPU

Examples

>>> import numpy as onp
>>> import mindspore.numpy as mnp
>>> from mindspore.common import Tensor, dtype
>>> from mindspore.scipy.linalg import eigh
>>> a = Tensor([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]], dtype.float64)
>>> w, v = eigh(a)
>>> print(onp.allclose(mnp.dot(a, v).asnumpy(), mnp.dot(v, mnp.diag(w)).asnumpy(), 1e-5, 1e-8))
True