文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.BatchNorm3d

class mindspore.nn.BatchNorm3d(num_features, eps=1e-05, momentum=0.9, affine=True, gamma_init='ones', beta_init='zeros', moving_mean_init='zeros', moving_var_init='ones', use_batch_statistics=None, data_format='NCDHW')[源代码]

对输入的五维数据进行批归一化(Batch Normalization Layer)。

在五维输入(带有附加通道维度的mini-batch 三维输入)上应用批归一化,避免内部协变量偏移。 归一化在卷积网络中得到了广泛的应用。

y=xE[x]Var[x]+ϵγ+β

Note

BatchNorm的实现在图模式和PyNative模式下是不同的,因此不建议在网络初始化后更改其模式。

需要注意的是,更新running_mean和running_var的公式为 x^new=(1momentum)×xt+momentum×x^ ,其中 x^ 是估计的统计量, xt 是新的观察值。

参数:

  • num_features (int) - 指定输入Tensor的通道数量。输入Tensor的size为(N, C, D, H, W)。

  • eps (float) - 加在分母上的值,以确保数值稳定。默认值:1e-5。

  • momentum (float) - 动态均值和动态方差所使用的动量。默认值:0.9。

  • affine (bool) - bool类型。设置为True时,可以学习gama和beta。默认值:True。

  • gamma_init (Union[Tensor, str, Initializer, numbers.Number]) - gamma参数的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’ones’。

  • beta_init (Union[Tensor, str, Initializer, numbers.Number]) - beta参数的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’zeros’。

  • moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]) - 动态均值和动态方差所使用的动量。平均值的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’zeros’。

  • moving_var_init (Union[Tensor, str, Initializer, numbers.Number]) - 动态均值和动态方差所使用的动量。方差的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’ones’。

  • use_batch_statistics (bool) - 如果为True,则使用当前批次数据的平均值和方差值。如果为False,则使用指定的平均值和方差值。如果为None,训练时,将使用当前批次数据的均值和方差,并更新动态均值和方差,验证过程将直接使用动态均值和方差。默认值:None。

  • data_format (str) - 数据格式的可选值为’NCDHW’。默认值:’NCDHW’。

输入:

  • x (Tensor) - 输入shape为 (N,Cin,Din,Hin,Win) 的Tensor。

输出:

Tensor,归一化后的Tensor,shape为 (N, C_{out}, D_{out},H_{out}, W_{out})

异常:

  • TypeError - num_features 不是整数。

  • TypeError - eps 不是浮点数。

  • ValueError - num_features 小于1。

  • ValueError - momentum 不在范围[0, 1]内。

  • ValueError - data_format 不是’NCDHW’。

支持平台:

Ascend GPU CPU

样例:

>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor
>>> net = nn.BatchNorm3d(num_features=3)
>>> x = Tensor(np.ones([16, 3, 10, 32, 32]).astype(np.float32))
>>> output = net(x)
>>> print(output.shape)
(16, 3, 10, 32, 32)