mindspore.dataset.SubsetSampler

class mindspore.dataset.SubsetSampler(indices, num_samples=None)[源代码]

给定样本的索引序列,对数据集采样指定索引的样本。

参数:

  • indices (Iterable): 索引的序列(包括除了string类型的任意Python可迭代对象类型)。

  • num_samples (int, 可选): 获取的样本数,可用于部分获取采样得到的样本。默认值:None,获取采样到的所有样本。

异常:

  • TypeError indices 的类型不是int。

  • TypeError num_samples 的类型不是int。

  • ValueError num_samples 为负值。

样例:

>>> indices = [0, 1, 2, 3, 4, 5]
>>>
>>> # creates a SubsetSampler, will sample from the provided indices
>>> sampler = ds.SubsetSampler(indices)
>>> dataset = ds.ImageFolderDataset(image_folder_dataset_dir,
...                                 num_parallel_workers=8,
...                                 sampler=sampler)
add_child(sampler)

为给定采样器添加子采样器。子采样器接收父采样器输出数据作为输入,并应用其采样逻辑返回新的采样结果。

参数:

  • sampler (Sampler) - 用于从数据集中选择样本的对象。仅支持内置采样器(DistributedSampler、PKSampler、RandomSampler、SequentialSampler、SubsetRandomSampler、WeightedRandomSampler)。

样例:

>>> sampler = ds.SequentialSampler(start_index=0, num_samples=3)
>>> sampler.add_child(ds.RandomSampler(num_samples=4))
>>> dataset = ds.Cifar10Dataset(cifar10_dataset_dir, sampler=sampler)
get_child()

获取给定采样器的子采样器。

返回:

Sampler,给定采样器的子采样器。

样例:

>>> sampler = ds.SequentialSampler(start_index=0, num_samples=3)
>>> sampler.add_child(ds.RandomSampler(num_samples=2))
>>> child_sampler = sampler.get_child()