Source code for mindspore.ops.operations.sparse_ops

# coding: utf-8

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.
# ============================================================================

"""Operators for sparse operators."""

from ..._checkparam import Validator as validator
from ...common import dtype as mstype
from ..primitive import PrimitiveWithInfer, Primitive, prim_attr_register


[文档]class SparseToDense(PrimitiveWithInfer): """ Converts a sparse representation into a dense tensor. Inputs: - **indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor. Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`. - **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`. The shape should be :math:`(n,)`. - **sparse_shape** (tuple(int)) - A positive int tuple which specifies the shape of sparse tensor, should have 2 elements, represent sparse tensor shape is :math:`(N, C)`. Returns: Tensor, converted from sparse tensor. The dtype is same as `values`, and the shape is `sparse_shape`. Raises: TypeError: If the dtype of `indices` is neither int32 nor int64. ValueError: If `sparse_shape`, shape of `indices` and shape of `values` don't meet the parameter description. Supported Platforms: ``CPU`` Examples: >>> indices = Tensor([[0, 1], [1, 2]]) >>> values = Tensor([1, 2], dtype=ms.float32) >>> sparse_shape = (3, 4) >>> sparse_to_dense = ops.SparseToDense() >>> out = sparse_to_dense(indices, values, sparse_shape) >>> print(out) [[0. 1. 0. 0.] [0. 0. 2. 0.] [0. 0. 0. 0.]] """ @prim_attr_register def __init__(self): """Initialize SparseToDense.""" self.init_prim_io_names(inputs=['indices', 'values', 'dense_shape'], outputs=['output']) def __infer__(self, indices, values, sparse_shape): validator.check_tensor_dtype_valid('indices', indices['dtype'], [mstype.int32, mstype.int64], self.name) validator.check_tensor_dtype_valid('values', values['dtype'], mstype.number_type + (mstype.bool_,), self.name) indices_shape = indices['shape'] if len(indices_shape) != 2: raise ValueError(f"For '{self.name}', the 'indices' must be a 2-D tensor, " f"but got 'indices' shape: {indices_shape}.") values_shape = values['shape'] if len(values_shape) != 1 or values_shape[0] != indices_shape[0]: raise ValueError(f"For '{self.name}', the 'values' must be a 1-D tensor and the first dimension length " f"must be equal to the first dimension length of 'indices', " f"but got 'indices' shape: {indices_shape}, 'values' shape: {values_shape}.") sparse_shape_v = sparse_shape['value'] for i in sparse_shape_v: if isinstance(i, bool) or not isinstance(i, int) or i <= 0: raise ValueError(f"For '{self.name}', all elements in 'sparse_shape' must be " f"positive int number, but got 'sparse_shape': {sparse_shape_v}.") if len(sparse_shape_v) != indices_shape[1]: raise ValueError(f"For '{self.name}', the length of 'sparse_shape' must be equal to the second dimension " f"length of 'indices', but got the second dimension length of 'indices': " f"{indices_shape[1]}, length of 'sparse_shape': {len(sparse_shape_v)}.") out = {'shape': sparse_shape['value'], 'dtype': values['dtype'], 'value': None} return out
[文档]class SparseTensorDenseMatmul(PrimitiveWithInfer): """ Multiplies sparse matrix `A` by dense matrix `B`. The rank of sparse matrix and dense matrix must be equal to `2`. Args: adjoint_st (bool): If true, sparse tensor is transposed before multiplication. Default: False. adjoint_dt (bool): If true, dense tensor is transposed before multiplication. Default: False. Inputs: - **indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor. Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`. - **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`. Support float16, float32, float64, int32, int64. The shape should be :math:`(n,)`. - **sparse_shape** (tuple(int)) - A positive int tuple which specifies the shape of sparse tensor, should have 2 elements, represent sparse tensor shape is :math:`(N, C)`. - **dense** (Tensor) - A 2-D Tensor, the dtype is same as `values`. If `adjoint_st` is False and `adjoint_dt` is False, the shape must be :math:`(C, M)`. If `adjoint_st` is False and `adjoint_dt` is True, the shape must be :math:`(M, C)`. If `adjoint_st` is True and `adjoint_dt` is False, the shape must be :math:`(N, M)`. If `adjoint_st` is True and `adjoint_dt` is True, the shape must be :math:`(M, N)`. Outputs: Tensor, the dtype is the same as `values`. If `adjoint_st` is False, the shape is :math:`(N, M)`. If `adjoint_st` is True, the shape is :math:`(C, M)`. Raises: TypeError: If the type of `adjoint_st` or `adjoint_dt` is not bool, or the dtype of `indices`, dtype of `values` and dtype of `dense` don't meet the parameter description. ValueError: If `sparse_shape`, shape of `indices`, shape of `values`, and shape of `dense` don't meet the parameter description. Supported Platforms: ``CPU`` Examples: >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) >>> values = Tensor([1, 2], dtype=ms.float32) >>> sparse_shape = (3, 4) >>> dense = Tensor([[1,1], [2,2], [3,3 ], [4, 4]], dtype=ms.float32) >>> sparse_dense_matmul = ops.SparseTensorDenseMatmul() >>> out = sparse_dense_matmul(indices, values, sparse_shape, dense) >>> print(out) [[2. 2.] [6. 6.] [0. 0.]] """ @prim_attr_register def __init__(self, adjoint_st=False, adjoint_dt=False): """Initialize SparseTensorDenseMatmul""" self.adjoint_st = adjoint_st self.adjoint_dt = adjoint_dt self.init_prim_io_names(inputs=['indices', 'values', 'sparse_shape', 'dense'], outputs=['output']) self.add_prim_attr('adjoint_st', self.adjoint_st) self.add_prim_attr('adjoint_dt', self.adjoint_dt) validator.check_value_type("adjoint_st", adjoint_st, [bool], self.name) validator.check_value_type("adjoint_dt", adjoint_dt, [bool], self.name) def __infer__(self, indices, values, sparse_shape, dense): validator.check_tensor_dtype_valid('indices', indices['dtype'], [mstype.int32, mstype.int64], self.name) valid_types = (mstype.float16, mstype.float32, mstype.float64, mstype.int32, mstype.int64) args = {'values': values['dtype'], 'dense': dense['dtype']} validator.check_tensors_dtypes_same_and_valid(args, valid_types, self.name) indices_shape = indices['shape'] if len(indices_shape) != 2 or indices_shape[1] != 2: raise ValueError(f"For '{self.name}', the 'indices' must be a 2-D tensor and " f"the second dimension length must be 2, but got 'indices' shape: {indices_shape}.") values_shape = values['shape'] if len(values_shape) != 1 or values_shape[0] != indices_shape[0]: raise ValueError(f"For '{self.name}', the 'values' must be a 1-D tensor and " f"the first dimension length must be equal to the first dimension length of 'indices', " f"but got 'indices' shape: {indices_shape}, 'values' shape: {values_shape}.") a_shape = sparse_shape['value'][::-1] if self.adjoint_st else sparse_shape['value'] b_shape = dense['shape'][::-1] if self.adjoint_dt else dense['shape'] for i in a_shape: if isinstance(i, bool) or not isinstance(i, int) or i <= 0: raise ValueError(f"For '{self.name}', all elements in 'sparse_shape' must be " f"positive int number, but got 'sparse_shape': {a_shape}.") if len(a_shape) != 2 or len(b_shape) != 2: raise ValueError(f"For '{self.name}', both the length of 'sparse_shape' and the tensor " f"rank of 'dense' must be equal to 2, but got the length of " f"'sparse_shape': {len(a_shape)}, " f"the tensor rank of 'dense': {len(b_shape)}.") if a_shape[1] != b_shape[0]: raise ValueError(f"For '{self.name}', the second dimension length of 'sparse_shape' must be equal to the " f"first dimension length of 'dense', but got " f"the tensor shape of 'sparse': {a_shape} and the tensor shape of 'dense': {b_shape}. " f"Don't meet the condition for matmul") out_shape = [a_shape[0], b_shape[1]] out = {'shape': tuple(out_shape), 'dtype': values['dtype'], 'value': None} return out
class CSRSparseMatrixToSparseTensor(Primitive): """ Converts a CSR sparse matrix(maybe batched) to its sparse tensor form. Inputs: - **x_dense_shape** (Tensor) - A 1-D Tensor. It represents the dense form shape of the input CSR sparse matrix, the shape of which should be :math:`(2,)` or :math:`(3,)`. - **x_batch_pointers** (Tensor) - A 1-D Tensor. Supposing the input CSR sparse matrix is of batch size `n`, it should have shape :math:`(n+1,)`, while the `i`-th element of which stores acummulated counts of non-zero values of the first `i - 1` batches. - **x_row_pointers** (Tensor) - A 1-D Tensor. Supposing the input CSR sparse matrix is of batch size `n` and row number `m`, it can be divided into `n` parts, each part of length `m + 1`. The `i`-th element of each :math:`(m+1,)` vector stores acummulated counts of non-zero values of the first `i - 1` rows in the corresponding batch. - **x_col_indices** (Tensor) - A 1-D Tensor. It represents column indices of the non-zero values in the input CSR sparse matrix. - **x_values** (Tensor) - A 1-D Tensor. It represents all the non-zero values in the input CSR sparse matrix. Outputs: - **indices** (Tensor) - A 2-D Tensor. It represents the position of the non-zero element in the sparse tensor. - **values** (Tensor) - A 1-D Tensor. It represents the value corresponding to the position in the `indices`, the shape of which should be :math:`(N,)`. - **dense_shape** (Tensor) - A 1-D Tensor. It represents the dense form shape of the sparse tensor. Its shape should be :math:`(2,)` or :math:`(3,)`. Raises: TypeError: If the dtype of `x_dense_shape` or `x_batch_pointers` or `x_row_pointers` or `x_col_indices` is not int32 or int64. TypeError: If the dtype of `x_values` is not float32, float64, complex64 or complex128. ValueError: If `x_dense_shape` or `x_batch_pointers` or `x_row_pointers` or `x_values` or `x_dense_shape` is not a 1-D tensor. ValueError: If rank of `x_dense_shape` is not 2 or 3. ValueError: If shape of `x_col_indices` is not corresponding to shape of `x_values`. Supported Platforms: ``GPU`` Examples: >>> x_dense_shape = Tensor(np.array([2, 2, 4]).astype(np.int64)) >>> x_batch_pointers = Tensor(np.array([0, 3, 6]).astype(np.int64)) >>> x_row_pointers = Tensor(np.array([0, 1, 3, 0, 1, 3]).astype(np.int64)) >>> x_col_indices = Tensor(np.array([1, 2, 3, 1, 2, 3]).astype(np.int64)) >>> x_values = Tensor(np.array([1, 4, 3, 1, 4, 3]).astype(np.float32)) >>> csr_sparse_matrix_to_sparse_tensor = ops.CSRSparseMatrixToSparseTensor() >>> out = csr_sparse_matrix_to_sparse_tensor(x_dense_shape, x_batch_pointers, x_row_pointers, ... x_col_indices, x_values) >>> print(out[0]) [[0 0 1] [0 1 2] [0 1 3] [1 0 1] [1 1 2] [1 1 3]] >>> print(out[1]) [1. 4. 3. 1. 4. 3.] >>> print(out[2]) [2 2 4] """ @prim_attr_register def __init__(self): """Initialize CSRSparseMatrixToSparseTensor.""" self.add_prim_attr("cust_aicpu", self.name) self.init_prim_io_names(inputs=['x_dense_shape', 'x_batch_pointers', 'x_row_pointers', 'x_col_indices', 'x_values'], outputs=['indices', 'values', 'dense_shape']) class DenseToCSRSparseMatrix(Primitive): """ Converts a dense matrix(maybe batched) to its CSR sparse form. .. warning:: This is an experimental prototype that is subject to change and/or deletion. Inputs: - **dense_input** (Tensor) - A 2-D or 3-D Tensor. It represents the input dense matrix. - **indices** (Tensor) - A 2-D Tensor. It represents indices of all the nonzero elements. Outputs: - **y_dense_shape** (Tensor) - A 1-D Tensor. It represents the dense form shape of the output CSR sparse matrix, the shape of which should be :math:`(2,)` or :math:`(3,)`. - **y_batch_pointers** (Tensor) - A 1-D Tensor. Supposing the output CSR sparse matrix is of batch size `n`, it should have shape :math:`(n+1,)`, while the `i`-th element of which stores acummulated counts of nonzero values of the first `i - 1` batches. - **y_row_pointers** (Tensor) - A 1-D Tensor. Supposing the output CSR sparse matrix is of batch size `n` and row number `m`, it can be divided into `n` parts, each part of length `m + 1`. The `i`-th element of each :math:`(m+1,)` vector stores acummulated counts of nonzero values of the first `i - 1` rows in the corresponding batch. - **y_col_indices** (Tensor) - A 1-D Tensor. It represents column indices of the nonzero values in the output CSR sparse matrix. - **y_values** (Tensor) - A 1-D Tensor. It represents all the nonzero values in the output CSR sparse matrix. Raises: TypeError: If the dtype of `indices` is not int32 or int64. TypeError: If the dtype of `dense_input` is not float32, float64, complex64 or complex128. ValueError: If either of the inputs is not a tensor. ValueError: If rank of `dense_input` is not 2 or 3. ValueError: If rank of `indices` is not 2. ValueError: If shape[1] of `indices` and rank of `dense_input` is not the same. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor([[[1., 0.], [0., 2.]]], dtype=ms.float32) >>> indices = Tensor([[0, 0, 0], [0, 1, 1]], dtype=ms.int32) >>> dense_to_csr = ops.DenseToCSRSparseMatrix() >>> out = dense_to_csr(x, indices) >>> print(out[0]) [1 2 2] >>> print(out[1]) [0 2] >>> print(out[2]) [0 1 2] >>> print(out[3]) [0 1] >>> print(out[4]) [1. 2.] """ @prim_attr_register def __init__(self): """Initialize DenseToCSRSparseMatrix""" self.init_prim_io_names( inputs=['dense_input', 'indices'], outputs=['y_dense_shape', 'y_batch_pointers', 'y_row_pointers', 'y_col_indices', 'y_values']) class DenseToDenseSetOperation(Primitive): """ Applies set operation along last dimension of 2 `Tensor` inputs. Iterate over groups in set x1 and set x2, applying `ApplySetOperation` to each, and outputting the result `SparseTensor`. A "group" is a collection of values with the same first n-1 dimensions in x1 and x2. Args: set_operation (str): The type of set operation, case insensitive. Default:"a-b". "a-b": Get the difference set of x1 to x2. "b-a": Get the difference set of x2 to x1. "intersection": Get the intersection set of x2 to x1. "union": Get the union set of x2 to x1. validate_indices (bool): Optional attributes for DenseToDenseSetOperation. Default: True. Inputs: - **x1** (Tensor) - The input tensor `x1` with rank `n`. 1st `n-1` dimensions must be the same as `x2`. Dimension `n` contains values in a set, duplicates are allowed but ignored. - **x2** (Tensor) - The input tensor `x2` with rank `n`. 1st `n-1` dimensions must be the same as `x1`. Dimension `n` contains values in a set, duplicates are allowed but ignored. Outputs: - **y_indices** (Tensor) - A 2-D Tensor of type int64, represents the position of the element in the sparse tensor. - **y_values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `y_indices`. The dtype is same as input. - **y_shape** (Tensor) - A 1-D Tensor of type int64, represents the shape of sparse tensor. `y_shape[0...n-1]` is the same as the 1st `n-1` dimensions of `x1` and `x2`, `y_shape[n]` is the max result set size across all `0...n-1` dimensions. Raises: TypeError: If input `x1` or `x2` is not Tensor. TypeError: If the type of `x1` is not the same as `x2`. ValueError: If the group shape of `x1` or `x2` mismatch with each other. ValueError: If the rank of `x1` or `x2` is less than 2. ValueError: If the value of attr set_operation is not a valid value. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> x1 = Tensor([[2, 2, 0], [2, 2, 1], [0, 2, 2]], dtype=mstype.int32) >>> x2 = Tensor([[2, 2, 1], [0, 2, 0], [0, 1, 1]], dtype=mstype.int32) >>> dtod=P.DenseToDenseSetOperation(set_operation="a-b",validate_indices=True) >>> res=dtod(x1,x2) >>> print(res[0]) [[0 0] [1 0] [2 0]] >>> print(res[1]) [0 1 2] >>> print(res[2]) [3 1] """ @prim_attr_register def __init__(self, set_operation="a-b", validate_indices=True): """Initialize DenseToDenseSetOperation.""" self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y_indices', 'y_values', 'y_shape']) validator.check_value_type("set_operation", set_operation, [str], self.name) validator.check_value_type("validate_indices", validate_indices, [bool], self.name) class Sspaddmm(Primitive): r""" Matrix multiplies a sparse tensor `x2` with a dense tensor `x3`, then adds the sparse tensor `x1`. If `x1_shape` is :math:`(s0, s1)`, `x2_shpae` should be :math:`(s0, s2)`, the `x3_shape` should be :math:`(s2, s1)`. .. warning:: This is an experimental prototype that is subject to change and/or deletion. .. math:: out =\beta * x1 + \alpha * (x2 @ x3), Inputs: - **x1_indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor. Support int32, int64. The shape is :math:`(2, n)`. If `x1_shape` is :math:`(s0, s1)`, the row index value of `x1_indices` should be a non-negative and less than `s0` int number, the col index value of `x1_indices` should be a non-negative and less than `s1` int number. - **x1_values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `x1_indices`. Support float32, float64, int8, int16, int32, int64, uint8. The dtype should be the same as `x2_values` and `x3_dense`. The shape should be :math:`(n,)`. - **x1_shape** (Tensor) - A 1-D Tensor, specifies the shape of sparse tensor. Support int32, int64, have 2 positive int elements, shape is :math:`(2,)`. The dtype should be the same as `x1_indices`. - **x2_indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor. Support int32, int64. The shape is :math:`(2, n)`. If `x2_shape` is :math:`(s0, s2)`, the row index value of `x2_indices` should be a non-negative and less than `s0` int number, the col index value of `x2_indices` should be a non-negative and less than `s2` int number. - **x2_values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `x2_indices`. Support float32, float64, int8, int16, int32, int64, uint8. The dtype should be the same as `x1_values` and `x3_dense`. The shape should be :math:`(n,)`. - **x2_shape** (Tensor) - A 1-D Tensor, specifies the shape of sparse tensor. Support int32,int64, have 2 positive int elements, shape is :math:`(2,)`. The dtype is same as `x2_indices`. - **x3_dense** (Tensor) - A 2-D Tensor, the dtype should be the same as `x2_values` and `x3_dense`. - **alpha** (Tensor) - A 0-D or 1-D Tensor, the weight of x1. If alpha is 1-D tensor, the shape should be :math:`()` otherwise the shape is :math:`(1,)`. Support uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64. If the dtype of alpha is not the same with expected output dtype, alpha value should be convert without overflow. - **beta** (Tensor) - A 0-D or 1-D, the weight of x2@x3. If alpha is 1-D tensor, the shape should be :math:`()` otherwise the shape is :math:`(1,)`. Support uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64. If the `x1_values` dtype is byte, char, short, int, long, the dtype of beta doesn't support float16, float32, float64. Outputs: - **y_indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor. The dtype is int64, each element value should be a non-negative int number. The shape is :math:`(2, n)`. - **y_values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `y_indices`. The dtype is the same as `x1_values` . The shape should be :math:`(n,)`. - **y_shape** (Tensor) - A 1-D Tensor, A positive int tuple which specifies the shape of sparse tensor. The dtype is int64, the values is the same as `x1_shape`. Raises: TypeError: If dtype of `x1_indices`, `x1_shape` is not the same and neither int32 nor int64. TypeError: If dtype of `x2_indices`, `x2_shape` is not the same and not int32 or int64. TypeError: If type of `x1_values`, `x2_values`, `x3_dense` is not the same. TypeError: If dtype of `x1_values`, `x2_values`, `x3_dense` is not uint8, int8, int16, int32, int64, float32, float64. ValueError: If shape of `x1_indices`, `x2_indices` is not (2, n). ValueError: If shape of `x1_values`, `x2_values` is not (n,). ValueError: If dim0 size of `x1_values` is not the same with dim1 size of `x1_indices`. ValueError: If dim0 size of `x2_values` is not the same with dim1 size of `x2_indices`. ValueError: If shape of `x1_shape` or shape of `x2_shape` is not (2,). ValueError: If dim of `x3_dense` is not 2D. ValueError: If dtype of `alpha` is not the same with `x2_values` dtype, and alpha value convert to the `x2_values` dtype overflow. TypeError: If dtype of `alpha`, `beta` is not uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64. TypeError: If the `x1_values` dtype is byte, char, short, int, long, while the dtype of beta is float16, float32 or float64. ValueError: If the shape of `alpha`, `beta` is not () or (1,). Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> x1_indices = Tensor(np.array([[0, 1], [0, 1]]), mstype.int64) >>> x1_values = Tensor(np.array([1, 2]), mstype.int32) >>> x1_shape = Tensor(np.array([3, 3]), mstype.int64) >>> x2_indices = Tensor(np.array([[0, 1], [2, 2]]), mstype.int64) >>> x2_values = Tensor(np.array([3, 4]), mstype.int32) >>> x2_shape = Tensor(np.array([3, 3]), mstype.int64) >>> x3_dense = Tensor(np.array([[1, 2, 3], [1, 3, 2], [3, 2, 1]]), mstype.int32) >>> alpha = Tensor(np.array(1), mstype.int32) >>> beta = Tensor(np.array(1), mstype.int32) >>> sspaddmm = ops.Sspaddmm() >>> out_indices, out_values, out_shapes = sspaddmm(x1_indices, x1_values, x1_shape, ... x2_indices, x2_values, x2_shape, x3_dense, alpha, beta) >>> print(out_indices) [[0 1 0 0 0 1 1 1] [0 1 0 1 2 0 1 2]] >>> print(out_values) [ 1 2 9 6 3 12 8 4] >>> print(out_shapes) [3 3] """ @prim_attr_register def __init__(self): """Initialize Sspaddmm.""" self.init_prim_io_names(inputs=['x1_indices', 'x1_values', 'x1_shape', 'x2_indices', 'x2_values', 'x2_shape', 'x3_dense', 'alpha', 'beta'], outputs=['y_indices', 'y_values', 'y_shape'])