自定义参数初始化
使用内置参数初始化
MindSpore提供了多种网络参数初始化的方式,并在部分算子中封装了参数初始化的功能。本节以Conv2d为例,分别介绍如何使用Initializer子类,字符串进行参数初始化。
Initializer初始化
Initializer
是MindSpore内置的参数初始化基类,所有内置参数初始化方法均继承该类。mindspore.nn
中提供的神经网络层封装均提供weight_init
、bias_init
等入参,可以直接使用实例化的Initializer进行参数初始化。样例如下:
[1]:
import numpy as np
import mindspore.nn as nn
import mindspore as ms
from mindspore.common.initializer import Normal, initializer
input_data = ms.Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
# 卷积层,输入通道为3,输出通道为64,卷积核大小为3*3,权重参数使用正态分布生成的随机数
net = nn.Conv2d(3, 64, 3, weight_init=Normal(0.2))
# 网络输出
output = net(input_data)
字符串初始化
除使用实例化的Initializer外,MindSpore也提供了参数初始化简易方法,即使用参数初始化方法名称的字符串。此方法使用Initializer的默认参数进行初始化。样例如下:
[2]:
import numpy as np
import mindspore.nn as nn
import mindspore as ms
net = nn.Conv2d(3, 64, 3, weight_init='normal')
output = net(input_data)
自定义参数初始化
通常情况下,MindSpore提供的默认参数初始化可以满足常用神经网络层的初始化需求,在遇到需要自定义的参数初始化方法时,可以继承Initializer自定义参数初始化方法。下面以XavierNormal
为例介绍自定义参数初始化方法:
[3]:
import math
import numpy as np
from mindspore.common.initializer import Initializer
def _calculate_fan_in_and_fan_out(arr):
# 计算fan_in和fan_out。fan_in是 `arr` 中输入单元的数量,fan_out是 `arr` 中输出单元的数量。
shape = arr.shape
dimensions = len(shape)
if dimensions < 2:
raise ValueError("'fan_in' and 'fan_out' can not be computed for arr with fewer than"
" 2 dimensions, but got dimensions {}.".format(dimensions))
if dimensions == 2: # Linear
fan_in = shape[1]
fan_out = shape[0]
else:
num_input_fmaps = shape[1]
num_output_fmaps = shape[0]
receptive_field_size = 1
for i in range(2, dimensions):
receptive_field_size *= shape[i]
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
class XavierNormal(Initializer):
def __init__(self, gain=1):
super().__init__()
# 配置初始化所需要的参数
self.gain = gain
def _initialize(self, arr): # arr为需要初始化的Tensor
fan_in, fan_out = _calculate_fan_in_and_fan_out(arr) # 计算fan_in, fan_out值
std = self.gain * math.sqrt(2.0 / float(fan_in + fan_out)) # 根据公式计算std值
data = np.random.normal(0, std, arr.shape) # 使用numpy构造初始化好的ndarray
arr[:] = data[:] # 将初始化好的ndarray赋值到arr
完成自定义初始化方法后,我们可以像内置初始化方法一样进行调用:
[4]:
net = nn.Conv2d(3, 64, 3, weight_init=XavierNormal())
# 网络输出
output = net(input_data)
Cell遍历初始化
除了使用weight_init
, bias_init
等mindspore.nn
接口提供的入参外,我们也习惯于先构造完整神经网络,然后对weight
、bias
等参数进行统一管理。此时需要先构造网络并实例化,然后对Cell进行遍历,并对参数进行赋值。下面是一个简单的样例:
[5]:
for name, param in net.parameters_and_names():
if 'weight' in name:
param.set_data(initializer(Normal(), param.shape, param.dtype))
if 'bias' in name:
param.set_data(initializer('zeros', param.shape, param.dtype))