文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.train.TopKCategoricalAccuracy

查看源文件
class mindspore.train.TopKCategoricalAccuracy(k)[源代码]

计算top-k分类正确率。

参数:
  • k (int) - 计算正确率使用的Top类别数。

异常:
  • TypeError - k 不是int。

  • ValueError - k 小于1。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.train import TopKCategoricalAccuracy
>>>
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
...         [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
>>> topk = TopKCategoricalAccuracy(3)
>>> topk.clear()
>>> topk.update(x, y)
>>> output = topk.eval()
>>> print(output)
0.6666666666666666
clear()[源代码]

内部评估结果清零。

eval()[源代码]

计算top-k分类正确率。

返回:

numpy.float64,计算结果。

update(*inputs)[源代码]

使用预测值 y_pred 和真实标签 y 更新局部变量。

参数:
  • inputs - 输入 y_predyy_predy 支持Tensor、list或numpy.ndarray类型。 y_pred 在大多数情况下由范围 [0,1] 中的浮点数组成,shape为 (N,C) ,其中 N 是样本数, C 是类别数。 y 由整数值组成。如果使用one-hot编码,则shape为 (N,C) ;如果使用类别索引,shape是 (N,)

说明

update 方法需要接收满足 (y_pred,y) 格式的输入。如果某些样本具有相同的正确率,则将选择第一个样本。