文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.multi_margin_loss

查看源文件
mindspore.ops.multi_margin_loss(input, target, p=1, margin=1, weight=None, reduction='mean')[源代码]

用于优化多分类问题的合页损失。

优化输入和输出之间的多级分类合页损耗(基于边缘损失)。

对于每个小批量样本,1D输入 x 和标量输出 y 的损失为:

loss(x,y)=imax(0,marginx[y]+x[i])px.size(0)

其中 i{0,,x.size(0)1} 并且 iy

参数:
  • input (Tensor) - 输入,shape为 (N,C)。数据类型只支持float32、float16或float64。即上述公式中的 x

  • target (Tensor) - 真实标签,shape为 (N,)。数据类型只支持int64。值应为非负值,且小于C。即上述公式中的 y

  • p (int, 可选) - 对偶距离的范数度。必须为1或2。默认 1

  • margin (int, 可选) - 改变对偶距离的参数。默认 1

  • weight (Tensor, 可选) - 每个类别的缩放权重,shape为 (C,)。数据类型只支持float32、float16或float64。默认 None

  • reduction (str,可选) - 指定应用于输出结果的规约计算方式。可选值为 'none''mean''sum' 。默认 'mean'

    • "none":不应用规约方法。

    • "mean":计算输出元素的加权平均值。

    • "sum":计算输出元素的总和。

返回:
  • outputs - 当 reduction 为"none"时,类型为Tensor,shape和 target 相同。否则,为标量。

异常:
  • TypeError - p 或者 target 数据类型不是int。

  • TypeError - margin 数据类型不是int。

  • TypeError - reduction 数据类型不是str。

  • TypeError - input 数据类型不是以下之一:float16、float、float64。

  • TypeError - weightinput 的数据类型不相同。

  • ValueError - p 的值不是以下之一:1、2。

  • ValueError - reduction 的值不是以下之一:{"none","sum","mean"}。

  • ValueError - input 的shape[0]和 target 的shape[0]不相等。

  • ValueError - input 的shape[1]和 weight 的shape[0]不相等。

  • ValueError - 如果有以下情形: weight 的维度不是1、 target 的维度不是1、 input 的维度不是2。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> inputs = Tensor(np.ones(shape=[3, 3]), mindspore.float32)
>>> target = Tensor(np.array([1, 2, 1]), mindspore.int64)
>>> weight = Tensor(np.array([1, 1, 1]), mindspore.float32)
>>> output = ops.multi_margin_loss(inputs, target, weight=weight)
>>> print(output)
0.6666667