mindspore.ops.gather
- mindspore.ops.gather(input_params, input_indices, axis, batch_dims=0)[源代码]
返回输入tensor在指定轴及指定索引上对应元素的切片。
下图展示了Gather常用的计算过程:
其中,params代表输入 input_params ,indices代表要切片的索引 input_indices 。
说明
input_indices的值必须在 [0, input_params.shape[axis]) 范围内。CPU与GPU平台越界访问将会抛出异常,Ascend平台越界访问的返回结果是未定义的。
Ascend平台上,input_params的数据类型不能是 mindspore.bool_ 。
返回tensor的shape为
。
- 参数:
input_params (Tensor) - 输入tensor。
input_indices (Tensor) - 指定索引。
axis (Union(int, Tensor[int])) - 指定轴。
batch_dims (int) - batch维的数量。默认
0
。
- 返回:
Tensor
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import mindspore >>> # case1: input_indices is a Tensor with shape (5, ). >>> input_params = mindspore.tensor([1, 2, 3, 4, 5, 6, 7], mindspore.float32) >>> input_indices = mindspore.tensor([0, 2, 4, 2, 6], mindspore.int32) >>> axis = 0 >>> output = mindspore.ops.gather(input_params, input_indices, axis) >>> print(output) [1. 3. 5. 3. 7.] >>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension, >>> # the output shape is equal to the input_indices shape. >>> input_indices = mindspore.tensor([[0, 2], [2, 6]], mindspore.int32) >>> axis = 0 >>> output = mindspore.ops.gather(input_params, input_indices, axis) >>> print(output) [[1. 3.] [3. 7.]] >>> # case3: input_indices is a Tensor with shape (2, ) and >>> # input_params is a Tensor with shape (3, 4) and axis is 0. >>> input_params = mindspore.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], mindspore.float32) >>> input_indices = mindspore.tensor([0, 2], mindspore.int32) >>> axis = 0 >>> output = mindspore.ops.gather(input_params, input_indices, axis) >>> print(output) [[ 1. 2. 3. 4.] [ 9. 10. 11. 12.]] >>> # case4: input_indices is a Tensor with shape (2, ) and >>> # input_params is a Tensor with shape (3, 4) and axis is 1, batch_dims is 1. >>> input_params = mindspore.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], mindspore.float32) >>> input_indices = mindspore.tensor([0, 2, 1], mindspore.int32) >>> axis = 1 >>> batch_dims = 1 >>> output = mindspore.ops.gather(input_params, input_indices, axis, batch_dims) >>> print(output) [ 1. 7. 10.]