mindspore.ops.gather

查看源文件
mindspore.ops.gather(input_params, input_indices, axis, batch_dims=0)[源代码]

返回输入tensor在指定轴及指定索引上对应元素的切片。

下图展示了Gather常用的计算过程:

../../_images/Gather.png

其中,params代表输入 input_params ,indices代表要切片的索引 input_indices

说明

  • input_indices的值必须在 [0, input_params.shape[axis]) 范围内。CPU与GPU平台越界访问将会抛出异常,Ascend平台越界访问的返回结果是未定义的。

  • Ascend平台上,input_params的数据类型不能是 mindspore.bool_

  • 返回tensor的shape为 input_params.shape[:axis]+input_indices.shape[batch_dims:]+input_params.shape[axis+1:]

参数:
  • input_params (Tensor) - 输入tensor。

  • input_indices (Tensor) - 指定索引。

  • axis (Union(int, Tensor[int])) - 指定轴。

  • batch_dims (int) - batch维的数量。默认 0

返回:

Tensor

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> # case1: input_indices is a Tensor with shape (5, ).
>>> input_params = mindspore.tensor([1, 2, 3, 4, 5, 6, 7], mindspore.float32)
>>> input_indices = mindspore.tensor([0, 2, 4, 2, 6], mindspore.int32)
>>> axis = 0
>>> output = mindspore.ops.gather(input_params, input_indices, axis)
>>> print(output)
[1. 3. 5. 3. 7.]
>>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension,
>>> # the output shape is equal to the input_indices shape.
>>> input_indices = mindspore.tensor([[0, 2], [2, 6]], mindspore.int32)
>>> axis = 0
>>> output = mindspore.ops.gather(input_params, input_indices, axis)
>>> print(output)
[[1. 3.]
 [3. 7.]]
>>> # case3: input_indices is a Tensor with shape (2, ) and
>>> # input_params is a Tensor with shape (3, 4) and axis is 0.
>>> input_params = mindspore.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], mindspore.float32)
>>> input_indices = mindspore.tensor([0, 2], mindspore.int32)
>>> axis = 0
>>> output = mindspore.ops.gather(input_params, input_indices, axis)
>>> print(output)
[[ 1.  2.  3.  4.]
 [ 9. 10. 11. 12.]]
>>> # case4: input_indices is a Tensor with shape (2, ) and
>>> # input_params is a Tensor with shape (3, 4) and axis is 1, batch_dims is 1.
>>> input_params = mindspore.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], mindspore.float32)
>>> input_indices = mindspore.tensor([0, 2, 1], mindspore.int32)
>>> axis = 1
>>> batch_dims = 1
>>> output = mindspore.ops.gather(input_params, input_indices, axis, batch_dims)
>>> print(output)
[ 1.  7. 10.]