文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.cdist

查看源文件
mindspore.ops.cdist(x1, x2, p=2.0)[源代码]

计算两个Tensor每对行向量之间的p-norm距离。

说明

  • Ascend上支持的输入数据类型为float16和float32。

  • CPU上支持的输入数据类型为float16和float32。

  • GPU上支持的输入数据类型为float32和float64。

参数:
  • x1 (Tensor) - 输入Tensor,shape为 (B,P,M)B 表示0或者正整数。 B 维度为0时该维度被忽略,shape为 (P,M)

  • x2 (Tensor) - 输入Tensor,shape为 (B,R,M) ,与 x1 的数据类型一致。

  • p (float,可选) - 计算向量对p-norm距离的P值,P >= 0。默认 2.0

返回:

Tensor,p-范数距离,数据类型与 x1 一致,shape为 (B,P,R)

异常:
  • TypeError - x1x2 不是Tensor。

  • TypeError - x1x2 的数据类型不符合上述“说明”中的要求。

  • TypeError - p 不是float32。

  • ValueError - p 是负数。

  • ValueError - x1x2 维度不同。

  • ValueError - x1x2 的维度既不是2,也不是3。

  • ValueError - x1x2 的批次维无法广播。

  • ValueError - x1x2 的列数不一样。

支持平台:

Ascend GPU CPU

样例:

>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor(np.array([[[1.0, 1.0], [2.0, 2.0]]]).astype(np.float32))
>>> y = Tensor(np.array([[[3.0, 3.0], [3.0, 3.0]]]).astype(np.float32))
>>> output = ops.cdist(x, y, 2.0)
>>> print(output)
[[[2.8284273 2.8284273]
  [1.4142137 1.4142137]]]