mindspore.ops.amin

查看源文件
mindspore.ops.amin(input, axis=None, keepdims=False, *, initial=None, where=None)[源代码]

返回tensor在指定轴上的最小值。

参数:
  • input (Tensor[Number]) - 输入tensor。

  • axis (Union[int, tuple(int), list(int), Tensor], 可选) - 指定计算的轴。如果为 None ,计算 input 中的所有元素。默认 None

  • keepdims (bool, 可选) - 输出tensor是否保留维度。默认 False

关键字参数:
  • initial (scalar, 可选) - 最小值的初始值。默认 None

  • where (Tensor[bool], 可选) - 指定计算最小值的范围,该tensor的shape须可被广播到 input 的shape上。必须指定initial值。默认 None ,表示计算全部元素。

返回:

Tensor

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> input = mindspore.tensor([[2, 5, 1, 6],
...                           [3, -7, -2, 4],
...                           [8, -4, 1, -3]])
>>> # case 1: By default, compute the minimum of all elements.
>>> mindspore.ops.amin(input)
Tensor(shape=[], dtype=Int64, value= -7)
>>>
>>> # case 2: Compute minimum along axis 1.
>>> mindspore.ops.amin(input, axis=1)
Tensor(shape=[3], dtype=Int64, value= [ 1, -7, -4])
>>>
>>> # case 3: If keepdims=True, the output shape will be same of that of the input.
>>> mindspore.ops.amin(input, axis=1, keepdims=True)
Tensor(shape=[3, 1], dtype=Int64, value=
[[ 1],
 [-7],
 [-4]])
>>>
>>> # case 4: Use "where" to include only specific elements in computing the minimum.
>>> where = mindspore.tensor([[1, 0, 1, 0],
...                           [0, 0, 1, 1],
...                           [1, 1, 1, 0]], dtype=mindspore.bool_)
>>> mindspore.ops.amin(input, axis=1, keepdims=True, initial=0, where=where)
Tensor(shape=[3, 1], dtype=Int64, value=
 [[ 0],
  [-2],
  [-4]])
>>>
>>> # case 5: The shape of "where" must be broadcast compatible with input.
>>> where = mindspore.tensor([[False],
...                           [False],
...                           [False]])
>>> mindspore.ops.amin(input, axis=0, keepdims=True, initial=0, where=where)
Tensor(shape=[1, 4], dtype=Int64, value=
 [[0, 0, 0, 0]])