文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.SoftmaxCrossEntropyWithLogits

查看源文件
class mindspore.ops.SoftmaxCrossEntropyWithLogits[源代码]

使用one-hot编码获取预测值和真实之间的softmax交叉熵。

SoftmaxCrossEntropyWithLogits算法的更新公式如下:

pij=softmax(Xij)=exp(xi)j=0N1exp(xj)lossij=jYijln(pij)

其中 X 代表 logitsY 代表 labelloss 代表 output

输入:
  • logits (Tensor) - 输入预测值,其shape为 (N,C) ,数据类型为float16或float32。

  • labels (Tensor) - 输入真实值,其shape为 (N,C) ,数据类型与 logits 的相同。

输出:

两个Tensor( loss , dlogits )组成的tuple, loss 的shape为 (N,)dlogits 的shape与 logits 的相同。

异常:
  • TypeError - logitslabels 的数据类型既不是float16也不是float32。

  • TypeError - logitslabels 不是Tensor。

  • ValueError - logits 的shape与 labels 的不同。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import Tensor, ops
>>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32)
>>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32)
>>> softmax_cross = ops.SoftmaxCrossEntropyWithLogits()
>>> loss, dlogits = softmax_cross(logits, labels)
>>> print(loss)
[0.5899297  0.52374405]
>>> print(dlogits)
[[ 0.02760027  0.20393994  0.01015357  0.20393994 -0.44563377]
 [ 0.08015892  0.02948882  0.08015892 -0.4077012   0.21789455]]