mindspore.ops.ScatterNdMul

查看源文件
class mindspore.ops.ScatterNdMul(use_locking=False)[源代码]

对张量中的单个值或切片应用稀疏乘法。

使用给定值通过乘法运算和输入索引更新Parameter或Tensor值。在更新完成后输出 input_x ,这有利于更加方便地使用更新后的值。

警告

这是一个实验性API,后续可能修改或删除。

更多参考详见 mindspore.ops.scatter_nd_mul()

参数:
  • use_locking (bool,可选) - 是否启用锁保护。默认值: False

输入:
  • input_x (Union[Parameter, Tensor]) - 输入参数,数据类型为Parameter或Tensor。

  • indices (Tensor) - 指定乘法操作的索引,数据类型为mindspore.int32或mindspore.int64。索引的rank必须至少为2,并且 indices.shape[-1] <= len(shape)

  • updates (Tensor) - 指定与 input_x 进行乘法操作的Tensor,数据类型与 input_x 相同,shape为 indices.shape[:-1] + x.shape[indices.shape[-1]:]

输出:

Tensor,更新后的 input_x ,shape和数据类型与 input_x 相同。

支持平台:

GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops, Parameter
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
>>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32)
>>> scatter_nd_mul = ops.ScatterNdMul()
>>> output = scatter_nd_mul(input_x, indices, updates)
>>> print(output)
[ 1. 16. 18.  4. 35.  6.  7. 72.]
>>> input_x = Parameter(Tensor(np.ones((4, 4, 4)), mindspore.int32))
>>> indices = Tensor(np.array([[0], [2]]), mindspore.int32)
>>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
...                            [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32)
>>> scatter_nd_mul = ops.ScatterNdMul()
>>> output = scatter_nd_mul(input_x, indices, updates)
>>> print(output)
[[[1 1 1 1]
  [2 2 2 2]
  [3 3 3 3]
  [4 4 4 4]]
 [[1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]]
 [[5 5 5 5]
  [6 6 6 6]
  [7 7 7 7]
  [8 8 8 8]]
 [[1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]
  [1 1 1 1]]]