mindspore.ops.ScatterNdDiv
- class mindspore.ops.ScatterNdDiv(use_locking=False)[源代码]
将稀疏除法应用于张量中的单个值或切片。
使用给定值通过除法运算和输入索引更新 input_x 的值。为便于使用更新后的值,函数返回 input_x 的副本。
警告
这是一个实验性API,后续可能修改或删除。
更多参考详见
mindspore.ops.scatter_nd_div()
。- 参数:
use_locking (bool,可选) - 是否启用锁保护。默认值:
False
。
- 输入:
input_x (Union[Parameter, Tensor]) - 输入参数,数据类型是Parameter或Tensor。
indices (Tensor) - 指定除法操作的索引,数据类型为mindspore.int32或mindspore.int64。索引的rank必须至少为2,并且 indices.shape[-1] <= len(shape) 。
updates (Tensor) - 指定与 input_x 进行除法操作的Tensor,数据类型与 input_x 相同,shape为 indices.shape[:-1] + x.shape[indices.shape[-1]:] 。
- 输出:
Tensor,更新后的 input_x ,shape和数据类型与 input_x 相同。
- 支持平台:
GPU
CPU
样例:
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops, Parameter >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> use_locking = False >>> scatter_nd_div = ops.ScatterNdDiv(use_locking) >>> output = scatter_nd_div(input_x, indices, updates) >>> print(output) [1. 0.25 0.5 4. 0.71428573 6. 7. 0.8888889 ] >>> input_x = Parameter(Tensor(np.ones((4, 4, 4)), mindspore.float32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.float32) >>> use_locking = False >>> scatter_nd_div = ops.ScatterNdDiv(use_locking) >>> output = scatter_nd_div(input_x, indices, updates) >>> print(output) [[[1. 1. 1. 1. ] [0.5 0.5 0.5 0.5 ] [0.33333334 0.33333334 0.33333334 0.33333334] [0.25 0.25 0.25 0.25 ]] [[1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ]] [[0.2 0.2 0.2 0.2 ] [0.16666667 0.16666667 0.16666667 0.16666667] [0.14285715 0.14285715 0.14285715 0.14285715] [0.125 0.125 0.125 0.125 ]] [[1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ]]]