文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.Gamma

查看源文件
class mindspore.ops.Gamma(seed=0, seed2=0)[源代码]

根据概率密度函数分布生成随机正值浮点数x。函数定义如下:

P(x|α,β)=exp(x/β)βαΓ(α)xα1

说明

  • 随机种子:通过一些复杂的数学算法,可以得到一组有规律的随机数,而随机种子就是这个随机数的初始值。随机种子相同,得到的随机数就不会改变。

  • 全局随机种子和算子层随机种子均未设置或均为0时:生成完全随机数。

  • 全局随机种子已设置,但算子层随机种子未设置时:将全局随机种子与0进行拼接。

  • 全局随机种子未设置,但算子层随机种子已设置时:将0与算子层随机种子进行拼接。

  • 全局随机种子和算子层随机种子均已设置时:将全局随机种子与算子层随机种子进行拼接。

警告

Ascend后端不支持随机数重现功能, seedseed2 参数不起作用。

参数:
  • seed (int,可选) - 算子层的随机种子,用于生成随机数。必须是非负的。默认值: 0

  • seed2 (int,可选) - 全局的随机种子,和算子层的随机种子共同决定最终生成的随机数。必须是非负的。默认值: 0

输入:
  • shape (tuple) - 待生成的随机Tensor的shape。只支持常量值。

  • alpha (Tensor) - α为Gamma分布的shape parameter,主要决定了曲线的形状。其值必须大于0。数据类型为float32。

  • beta (Tensor) - β为Gamma分布的inverse scale parameter,主要决定了曲线有多陡。其值必须大于0。数据类型为float32。

输出:

Tensor。shape是输入 shapealphabeta 广播后的shape。数据类型为float32。

异常:
  • TypeError - seedseed2 的数据类型不是int。

  • TypeError - alphabeta 不是Tensor。

  • TypeError - alphabeta 的数据类型不是float32。

  • ValueError - shape 不是常量值。

支持平台:

Ascend

样例:

>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> from mindspore import dtype as mstype
>>> shape = (3, 1, 2)
>>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mstype.float32)
>>> beta = Tensor(np.array([1.0]), mstype.float32)
>>> gamma = ops.Gamma(seed=3)
>>> output = gamma(shape, alpha, beta)
>>> result = output.shape
>>> print(result)
(3, 2, 2)