文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.Conv3DTranspose

查看源文件
class mindspore.ops.Conv3DTranspose(in_channel, out_channel, kernel_size, mode=1, stride=1, pad_mode='valid', pad=0, dilation=1, group=1, output_padding=0, data_format='NCDHW')[源代码]

计算三维转置卷积,也称为反卷积(实际不是真正的反卷积)。

输入的shape通常为 (N,C,D,H,W), 其中 N 为batch size,C 是空间维度,DHW 分别为特征层的深度、高度和宽度。

pad_mode 被设定为 "pad",则输出的深度,高度和宽度被定义为:

Dout=(Din1)×stride[0]2×pad[0]+dilation[0]×(kernel_size[0]1)+output_padding[0]+1Hout=(Hin1)×stride[1]2×pad[1]+dilation[1]×(kernel_size[1]1)+output_padding[1]+1Wout=(Win1)×stride[2]2×pad[2]+dilation[2]×(kernel_size[2]1)+output_padding[2]+1

说明

  • 在Ascend平台上,目前只支持 group=1

  • Atlas A2训练系列产品暂不支持 output_padding

参数:
  • in_channel (int) - 输入 dout 的通道数。

  • out_channel (int) - 输入 weight 的通道数。

  • kernel_size (Union[int, tuple[int]]) - 指定三维卷积核的深度、高度和宽度。数据类型为int或包含三个int值的Tuple。为int时表示卷积核的深度、高度和宽度均为该值。包含三个int值的Tuple分别表示卷积核的深度、高度和宽度。

  • mode (int,可选) - 指定不同的卷积模式。此值目前未被使用。默认值: 1

  • pad_mode (str,可选) - 指定填充模式,填充值为0。可选值为 "same""valid""pad" 。默认值: "valid"

    • "same":在输入的深度、高度和宽度维度进行填充,使得当 stride1 时,输入和输出的shape一致。待填充的量由算子内部计算,若为偶数,则均匀地填充在四周,若为奇数,多余的填充量将补充在前方/底部/右侧。如果设置了此模式, pad 必须为0。

    • "valid":不对输入进行填充,返回输出可能的最大深度、高度和宽度。如果不能构成一个完整stride,那么额外的像素将被丢弃。如果设置了此模式, pad 必须为0。

    • "pad":对输入填充指定的量。在这种模式下,在输入的深度、高度和宽度方向上填充的量由 pad 参数指定。如果设置此模式, pad 必须大于或等于0。

  • pad (Union(int, tuple[int]),可选) - 在输入各维度两侧填充的数量。如果 pad 是一个整数,则前部、后部、顶部,底部,左边和右边的填充都等于 pad 。如果 pad 是6个整数的Tuple,则前部、后部、顶部、底部、左边和右边的填充分别等于填充 pad[0]pad[1]pad[2]pad[3]pad[4]pad[5] 。默认值: 0

  • stride (Union(int, tuple[int]),可选) - 三维卷积核的移动步长。数据类型为整型或三个整型的Tuple。一个整数表示在深度、高度和宽度方向的移动步长均为该值。三个整数的Tuple分别表示在深度、高度和宽度方向的移动步长。默认值: 1

  • dilation (Union(int, tuple[int]),可选) - 卷积核膨胀尺寸,指定应用卷积核的间隔。默认值: 1

  • group (int,可选) - 将过滤器拆分的组数, in_channelsout_channels 必须可被 group 整除。默认值: 1

  • output_padding (Union(int, tuple[int]),可选) - 为输出的各个维度添加额外长度。默认值: 0

  • data_format (str,可选) - 支持的数据模式。目前仅支持 "NCDHW" 。默认值: "NCDHW"

输入:
  • dout (Tensor) - 卷积操作的输出的梯度Tensor。shape: (N,Cin,Dout,Hout,Wout) 。 支持数据类型:

    • Ascend: float16。

    • GPU/CPU: float16、float32。

  • weight (Tensor) - 若kernel shape为 (Kd,Kh,Kw) ,则weight shape应为 (Cin,Cout//group,Kd,Kh,Kw) ,其中 group 为算子参数。// 为整数除法操作。其数据类型与 dout 一致。

  • bias (Tensor) - shape为 Cout 的Tensor。目前仅支持 None 。默认值: None

输出:

卷积操作的输入的梯度Tensor,shape: (N,Cout//group,Dout,Hout,Wout) ,其中 group 为算子参数。

异常:
  • TypeError - in_channelout_channelgroup 不是int。

  • TypeError - kernel_sizestridepaddilationoutput_padding 既不是int也不是Tuple。

  • ValueError - in_channelout_channelkernel_sizestridedilation 小于1。

  • ValueError - pad 小于0。

  • ValueError - pad_mode 取值非"same"、"valid"或"pad"。

  • ValueError - pad 为长度不等于6的Tuple。

  • ValueError - pad_mode 未设定为"pad"且 pad 不等于(0, 0, 0, 0, 0, 0)。

  • ValueError - data_format 取值非"NCDHW"。

  • TypeError - doutweight 的数据类型不是float16也不是float32。

  • ValueError - bias 不为None。 doutweight 的秩不为5。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> dout = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float16)
>>> weight = Tensor(np.ones([16, 3, 4, 6, 2]), mindspore.float16)
>>> conv3d_transpose = ops.Conv3DTranspose(in_channel=16, out_channel=3, kernel_size=(4, 6, 2))
>>> output = conv3d_transpose(dout, weight)
>>> print(output.shape)
(32, 3, 13, 37, 33)