mindspore.ops.AdaptiveAvgPool2D
- class mindspore.ops.AdaptiveAvgPool2D(output_size)[源代码]
二维自适应平均池化。
更多参考详见
mindspore.ops.adaptive_avg_pool2d()
。警告
这是一个实验性API,后续可能修改或删除。
- 参数:
output_size (Union[int, tuple]) - 输出特征图的size。 output_size 可以为二元tuple表示 \((H, W)\)。或者是单个int表示 \((H, H)\) 。 \(H\) 和 \(W\) 可以是int或None,如果是None,则意味着输出的size与输入相同。
- 输入:
input_x (Tensor) - AdaptiveAvgPool2D的输入,为三维或四维的Tensor,数据类型为float16、float32或者float64。
- 输出:
Tensor,数据类型与 input_x 相同。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> # case 1: output_size=(None, 2) >>> input_x = Tensor(np.array([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]), mindspore.float32) >>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((None, 2)) >>> output = adaptive_avg_pool_2d(input_x) >>> print(output) [[[1.5 2.5] [4.5 5.5] [7.5 8.5]] [[1.5 2.5] [4.5 5.5] [7.5 8.5]] [[1.5 2.5] [4.5 5.5] [7.5 8.5]]] >>> # case 2: output_size=2 >>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D(2) >>> output = adaptive_avg_pool_2d(input_x) >>> print(output) [[[3. 4.] [6. 7.]] [[3. 4.] [6. 7.]] [[3. 4.] [6. 7.]]] >>> # case 3: output_size=(1, 2) >>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((1, 2)) >>> output = adaptive_avg_pool_2d(input_x) >>> print(output) [[[4.5 5.5]] [[4.5 5.5]] [[4.5 5.5]]]