mindspore.nn.MultiLabelSoftMarginLoss

查看源文件
class mindspore.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean')[源代码]

基于最大熵计算用于多标签优化的损失。

多标签软间隔损失通常用于多标签分类任务中,输入样本可以属于多个目标类别。 给定输入 x 和二元标签 y ,其shape为 (N,C)N 表示样本数量, C 为样本类别数,损失计算公式如下:

loss(x,y)=1N1Ci=1Nj=1C(yijlog11+exij+(1yij)logexij1+exij)

其中 xij 表示样本 ij 类别的概率得分。 yij 表示样本 i 是否属于类别 jyij=1 时属于,为0时不属于。对于多标签分类任务,每个样本可以属于多个类别,即标签中含有多个1。 如果 weight 不为 None ,将会和每个分类的loss相乘。

参数:
  • weight (Union[Tensor, int, float]) - 每个类别的缩放权重。默认值: None

  • reduction (str,可选) - 指定应用于输出结果的规约计算方式,可选 'none''mean''sum' ,默认值: 'mean'

    • "none":不应用规约方法。

    • "mean":计算输出元素的加权平均值。

    • "sum":计算输出元素的总和。

输入:
  • x (Tensor) - shape为 (N,C) 的Tensor,N为batch size,C为类别个数。

  • target (Tensor) - 目标值,数据类型和shape与 x 的相同。

输出:

Tensor,数据类型和 x 相同。如果 reduction"none" ,其shape为(N)。否则,其shape为0。

异常:
  • ValueError - xtarget 的维度不等于2。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore as ms
>>> import mindspore.nn as nn
>>> x = ms.Tensor([[0.3, 0.6, 0.6], [0.9, 0.4, 0.2]])
>>> target = ms.Tensor([[0.0, 0.0, 1.0], [0.0, 0.0, 1.0]])
>>> loss = nn.MultiLabelSoftMarginLoss(reduction='mean')
>>> out = loss(x, target)
>>> print(out.asnumpy())
0.84693956