mindspore.mint.optim.AdamW

查看源文件
class mindspore.mint.optim.AdamW(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, *, maximize=False)[源代码]

Adaptive Moment Estimation Weight Decay(AdamW)算法的实现。

input:γ(lr),β1,β2(betas),θ0(params),f(θ)(objective),ϵ (epsilon)λ(weight decay),amsgrad,maximizeinitialize:m00 (first moment),v00 ( second moment),v0^max0fort=1todoifmaximize:gtθft(θt1)elsegtθft(θt1)θtθt1γλθt1mtβ1mt1+(1β1)gtvtβ2vt1+(1β2)gt2mt^mt/(1β1t)vt^vt/(1β2t)ifamsgradvt^maxmax(vt^max,vt^)θtθtγmt^/(vt^max+ϵ)elseθtθtγmt^/(vt^+ϵ)returnθt

警告

  • 这是一个实验性的优化器接口,需要和 LRScheduler 下的动态学习率接口配合使用。

  • 对于Ascend,仅Atlas A2以上平台支持。

参数:
  • params (Union[list(Parameter), list(dict)]) - 网络参数的列表或指定了参数组的列表。

  • lr (float, 可选) - 学习率。默认值:1e-3

  • betas (Tuple[float, float], 可选) - 动量矩阵的指数衰减率。默认值:(0.9, 0.999)

  • eps (float, 可选) - 加在分母上的值,以确保数值稳定。必须大于0。默认值:1e-8

  • weight_decay (float, 可选) - 权重衰减(L2 penalty)。默认值:1e-2

  • amsgrad (bool, 可选) - 是否使用AMSGrad算法。默认值:False

关键字参数:
  • maximize (bool, 可选) - 是否根据目标函数最大化网络参数。默认值:False

输入:
  • gradients (tuple[Tensor], 可选) - 网络权重的梯度。

异常:
  • ValueError - 学习率不是float。

  • ValueError - 学习率小于0。

  • ValueError - eps 小于0。

  • ValueError - betas 范围不在[0, 1)之间。

  • ValueError - weight_decay 小于0。

支持平台:

Ascend

样例:

>>> import mindspore
>>> from mindspore import mint
>>> from mindspore.mint import optim
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optimizer = optim.AdamW(net.trainable_params(), lr=0.1)
>>> def forward_fn(data, label):
...     logits = net(data)
...     loss = loss_fn(logits, label)
...     return loss, logits
>>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
>>> def train_step(data, label):
...     (loss, _), grads = grad_fn(data, label)
...     optimizer(grads)
...     return loss