mindspore.experimental.optim.NAdam
- class mindspore.experimental.optim.NAdam(params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, momentum_decay=4e-3)[源代码]
NAdam算法的实现。
警告
这是一个实验性的优化器接口,需要和 LRScheduler 下的动态学习率接口配合使用。
- 参数:
params (Union[list(Parameter), list(dict)]) - 网络参数的列表或指定了参数组的列表。
lr (Union[int, float, Tensor], 可选) - 学习率。默认值:
2e-3
。betas (Tuple[float, float], 可选) - 梯度及其平方的运行平均值的系数。默认值:
(0.9, 0.999)
。eps (float, 可选) - 加在分母上的值,以确保数值稳定。必须大于0。默认值:
1e-8
。weight_decay (float, 可选) - 权重衰减(L2 penalty)。默认值:
0.
。momentum_decay (float, 可选) - 动量衰减系数。默认值:
4e-3
。
- 输入:
gradients (tuple[Tensor]) - 网络权重的梯度。
- 异常:
ValueError - 学习率不是int、float或Tensor。
ValueError - 学习率小于0。
ValueError - eps 小于0。
ValueError - weight_decay 小于0。
ValueError - momentum_decay 小于0。
ValueError - betas 内元素取值范围不在[0, 1)之间。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import mindspore >>> from mindspore import nn >>> from mindspore.experimental import optim >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> optimizer = optim.NAdam(net.trainable_params(), lr=0.1) >>> def forward_fn(data, label): ... logits = net(data) ... loss = loss_fn(logits, label) ... return loss, logits >>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) >>> def train_step(data, label): ... (loss, _), grads = grad_fn(data, label) ... optimizer(grads) ... return loss