mindspore.experimental.optim.Adadelta

查看源文件
class mindspore.experimental.optim.Adadelta(params, lr=1.0, rho=0.9, eps=1e-6, weight_decay=0.0, *, maximize=False)[源代码]

Adadelta算法的实现。

更新公式如下:

input:γ (lr),θ0 (params),f(θ) (objective),ρ (decay),λ (weight decay)initialize:v00 (square avg),u00 (accumulate variables)fort=1todogtθft(θt1)ifλ0gtgt+λθt1vtvt1ρ+gt2(1ρ)Δxtut1+ϵvt+ϵgtutut1ρ+Δxt2(1ρ)θtθt1γΔxtreturnθt

警告

这是一个实验性的优化器接口,需要和 LRScheduler 下的动态学习率接口配合使用。

参数:
  • params (Union[list(Parameter), list(dict)]) - 网络参数的列表或指定了参数组的列表。

  • lr (Union[int, float, Tensor], 可选) - 学习率。默认值:1.0

  • rho (float, 可选) - 梯度平方平均值的系数。上述公式中的 ρ。默认值:0.9

  • eps (float, 可选) - 加在分母上的值,以确保数值稳定。上述公式中的 ϵ。默认值:1e-6

  • weight_decay (float, 可选) - 权重衰减(L2 penalty)。默认值:0.

关键字参数:
  • maximize (bool, 可选) - 是否根据目标函数最大化网络参数。默认值:False

输入:
  • gradients (tuple[Tensor]) - 网络权重的梯度。

异常:
  • ValueError - 学习率不是int、float或Tensor。

  • ValueError - 学习率小于0。

  • ValueError - eps 小于等于0。

  • ValueError - rho 范围不在[0, 1]之间。

  • ValueError - weight_decay 小于0。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import nn
>>> from mindspore.experimental import optim
>>> # Define the network structure of LeNet5. Refer to
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
>>> net = LeNet5()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optimizer = optim.Adadelta(net.trainable_params(), lr=0.1)
>>> def forward_fn(data, label):
...     logits = net(data)
...     loss = loss_fn(logits, label)
...     return loss, logits
>>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
>>> def train_step(data, label):
...     (loss, _), grads = grad_fn(data, label)
...     optimizer(grads)
...     return loss