mindspore.dataset.vision.RandomCropDecodeResize
- class mindspore.dataset.vision.RandomCropDecodeResize(size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Inter.BILINEAR, max_attempts=10)[源代码]
"裁剪"、"解码"和"调整尺寸大小"的组合处理。该操作将在随机位置裁剪输入图像,以 RGB 模式对裁剪后的图像进行解码,并调整解码图像的尺寸大小。针对 JPEG 图像进行了优化, 可以获得更好的性能。
- 参数:
size (Union[int, Sequence[int]]) - 调整后图像的输出尺寸大小。大小值必须为正。 如果 size 是整数,则返回一个裁剪尺寸大小为 (size, size) 的正方形。 如果 size 是一个长度为 2 的序列,则以2个元素分别为高和宽放缩至(高度, 宽度)大小。
scale (Union[list, tuple], 可选) - 要裁剪的原始尺寸大小的各个尺寸的范围[min, max),必须为非负数。默认值:
(0.08, 1.0)
。ratio (Union[list, tuple], 可选) - 宽高比的范围 [min, max) 裁剪,必须为非负数。默认值:
(3. / 4., 4. / 3.)
。interpolation (
Inter
, 可选) - 图像插值方法。可选值详见mindspore.dataset.vision.Inter
。 默认值:Inter.BILINEAR
。max_attempts (int, 可选) - 生成随机裁剪位置的最大尝试次数,超过该次数时将使用中心裁剪, max_attempts 值必须为正数。默认值:
10
。
- 异常:
TypeError - 如果 size 不是int或Sequence[int]类型。
TypeError - 如果 scale 不是tuple或list类型。
TypeError - 如果 ratio 不是tuple或list类型。
TypeError - 如果 interpolation 不是
mindspore.dataset.vision.Inter
的类型。TypeError - 如果 max_attempts 不是int类型。
ValueError - 如果 size 不是正数。
ValueError - 如果 scale 为负数。
ValueError - 如果 ratio 为负数。
ValueError - 如果 max_attempts 不是正数。
RuntimeError - 如果输入图像不是一维序列。
- 支持平台:
CPU
样例:
>>> import os >>> import numpy as np >>> from PIL import Image, ImageDraw >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> class MyDataset: ... def __init__(self): ... self.data = [] ... img = Image.new("RGB", (300, 300), (255, 255, 255)) ... draw = ImageDraw.Draw(img) ... draw.ellipse(((0, 0), (100, 100)), fill=(255, 0, 0), outline=(255, 0, 0), width=5) ... img.save("./1.jpg") ... data = np.fromfile("./1.jpg", np.uint8) ... self.data.append(data) ... ... def __getitem__(self, index): ... return self.data[0] ... ... def __len__(self): ... return 5 >>> >>> my_dataset = MyDataset() >>> generator_dataset = ds.GeneratorDataset(my_dataset, column_names="image") >>> resize_crop_decode_op = vision.RandomCropDecodeResize(size=(50, 75), ... scale=(0.25, 0.5), ... interpolation=Inter.NEAREST, ... max_attempts=5) >>> transforms_list = [resize_crop_decode_op] >>> generator_dataset = generator_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in generator_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (50, 75, 3) uint8 >>> os.remove("./1.jpg") >>> >>> # Use the transform in eager mode >>> img = Image.new("RGB", (300, 300), (255, 255, 255)) >>> draw = ImageDraw.Draw(img) >>> draw.polygon([(50, 50), (150, 50), (100, 150)], fill=(0, 255, 0), outline=(0, 255, 0)) >>> img.save("./2.jpg") >>> data = np.fromfile("./2.jpg", np.uint8) >>> output = vision.RandomCropDecodeResize(size=(50, 75), scale=(0, 10.0), ratio=(0.5, 0.5), ... interpolation=Inter.BILINEAR, max_attempts=1)(data) >>> print(np.array(output).shape, np.array(output).dtype) (50, 75, 3) uint8 >>> os.remove("./2.jpg")
- 教程样例: