mindspore.dataset.vision.AutoContrast

查看源文件
class mindspore.dataset.vision.AutoContrast(cutoff=0.0, ignore=None)[源代码]

在输入图像上应用自动对比度。首先计算图像的直方图,将直方图中最亮像素的值映射为255,将直方图中最暗像素的值映射为0。

支持 Ascend 硬件加速,需要通过 .device("Ascend") 方式开启。

参数:
  • cutoff (float, 可选) - 输入图像直方图中需要剔除的最亮和最暗像素的百分比。该值必须在 [0.0, 50.0) 范围内。默认值: 0.0

  • ignore (Union[int, sequence], 可选) - 要忽略的背景像素值,忽略值必须在 [0, 255] 范围内。默认值: None

异常:
  • TypeError - 如果 cutoff 不是float类型。

  • TypeError - 如果 ignore 不是int或sequence类型。

  • ValueError - 如果 cutoff 不在[0, 50.0) 范围内。

  • ValueError - 如果 ignore 不在[0, 255] 范围内。

  • RuntimeError - 如果输入图像的shape不是 <H, W> 或 <H, W, C>。

支持平台:

CPU Ascend

样例:

>>> import numpy as np
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision as vision
>>>
>>> # Use the transform in dataset pipeline mode
>>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8)
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"])
>>> transforms_list = [vision.AutoContrast(cutoff=10.0, ignore=[10, 20])]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"])
>>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["image"].shape, item["image"].dtype)
...     break
(100, 100, 3) uint8
>>>
>>> # Use the transform in eager mode
>>> data = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], dtype=np.uint8).reshape((2, 2, 3))
>>> output = vision.AutoContrast(cutoff=10.0, ignore=[10, 20])(data)
>>> print(output.shape, output.dtype)
(2, 2, 3) uint8
教程样例:
device(device_target='CPU')[源代码]

指定该变换执行的设备。

  • 当执行设备是 Ascend 时,输入数据支持 uint8 或者 float32 类型,输入数据的通道仅支持1和3。如果数据类型是float32,期望输入的值的范围为[0,1]。输入数据的高度限制范围为[4, 8192]、宽度限制范围为[6, 4096]。

参数:
  • device_target (str, 可选) - 算子将在指定的设备上运行。当前支持 CPUAscend 。默认值: CPU

异常:
  • TypeError - 当 device_target 的类型不为str。

  • ValueError - 当 device_target 的取值不为 CPU / Ascend

支持平台:

CPU Ascend

样例:

>>> import numpy as np
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision as vision
>>>
>>> # Use the transform in dataset pipeline mode
>>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8)
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"])
>>> transforms_list = [vision.AutoContrast(cutoff=10.0, ignore=[10, 20]).device("Ascend")]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"])
>>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["image"].shape, item["image"].dtype)
...     break
(100, 100, 3) uint8
>>>
>>> # Use the transform in eager mode
>>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8)
>>> output = vision.AutoContrast(cutoff=10.0, ignore=[10, 20]).device("Ascend")(data)
>>> print(output.shape, output.dtype)
(100, 100, 3) uint8