mindspore.dataset.OmniglotDataset

查看源文件
class mindspore.dataset.OmniglotDataset(dataset_dir, background=None, num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None)[源代码]

Omniglot数据集。

生成的数据集有两列: [image, label]image 列的数据类型为uint8。 label 列的数据类型为int32。

参数:
  • dataset_dir (str) - 包含数据集文件的根目录路径。

  • background (bool, 可选) - 是否使用 'background' 集来创建数据集,否则使用 'evaluation' 集创建数据集。默认值: None ,将被设为 True

  • num_samples (int, 可选) - 指定从数据集中读取的样本数。默认值: None ,读取全部样本图片。

  • num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值: None ,使用全局默认线程数(8),也可以通过 mindspore.dataset.config.set_num_parallel_workers() 配置全局线程数。

  • shuffle (bool, 可选) - 是否混洗数据集。默认值: None 。下表中会展示不同参数配置的预期行为。

  • decode (bool, 可选) - 是否对读取的图片进行解码操作。默认值: False ,不解码。

  • sampler (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值: None 。下表中会展示不同配置的预期行为。

  • num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: None 。指定此参数后, num_samples 表示每个分片的最大样本数。一般在 数据并行模式训练 的时候使用。

  • shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: None 。只有当指定了 num_shards 时才能指定此参数。

  • cache (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值: None ,不使用缓存。

异常:
  • RuntimeError - dataset_dir 路径下不包含数据文件。

  • RuntimeError - 同时指定了 samplershuffle 参数。

  • RuntimeError - 同时指定了 samplernum_shards 参数或同时指定了 samplershard_id 参数。

  • RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。

  • RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。

  • ValueError - 如果 shard_id 取值不在[0, num_shards )范围。

样例:

>>> import mindspore.dataset as ds
>>> omniglot_dataset_dir = "/path/to/omniglot_dataset_directory"
>>> dataset = ds.OmniglotDataset(dataset_dir=omniglot_dataset_dir,
...                              num_parallel_workers=8)
教程样例:

说明

入参 num_samplesshufflenum_shardsshard_id 可用于控制数据集所使用的采样器,其与入参 sampler 搭配使用的效果如下。

参数 samplernum_samplesshufflenum_shardsshard_id 的不同组合得到的采样器

参数 sampler

参数 num_shards / shard_id

参数 shuffle

参数 num_samples

使用的采样器

mindspore.dataset.Sampler 类型

None

None

None

sampler

numpy.ndarray,list,tuple,int 类型

/

/

num_samples

SubsetSampler(indices = sampler , num_samples = num_samples )

iterable 类型

/

/

num_samples

IterSampler(sampler = sampler , num_samples = num_samples )

None

num_shards / shard_id

None / True

num_samples

DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = True , num_samples = num_samples )

None

num_shards / shard_id

False

num_samples

DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = False , num_samples = num_samples )

None

None

None / True

None

RandomSampler(num_samples = num_samples )

None

None

None / True

num_samples

RandomSampler(replacement = True , num_samples = num_samples )

None

None

False

num_samples

SequentialSampler(num_samples = num_samples )

关于Omniglot数据集:

Omniglot数据集是为开发更像人类的学习算法而设计的。它包含来自50个不同字母的1623个不同的手写字符。 这1623个字符中的每一个都是由20个不同的人通过亚马逊的Mechanical Turk在线绘制的。每张图片都与一个笔画数据配对,由形如[x,y,t]的坐标、时间序列表示,时间单位为毫秒。

您可以解压原始Omniglot数据集文件构建成如下目录结构,并通过MindSpore的API进行读取。

.
└── omniglot_dataset_directory
     ├── images_background/
     │    ├── character_class1/
     ├    ├──── 01.jpg
     │    ├──── 02.jpg
     │    ├── character_class2/
     ├    ├──── 01.jpg
     │    ├──── 02.jpg
     │    ├── ...
     ├── images_evaluation/
     │    ├── character_class1/
     ├    ├──── 01.jpg
     │    ├──── 02.jpg
     │    ├── character_class2/
     ├    ├──── 01.jpg
     │    ├──── 02.jpg
     │    ├── ...

引用:

@article{lake2015human,
    title={Human-level concept learning through probabilistic program induction},
    author={Lake, Brenden M and Salakhutdinov, Ruslan and Tenenbaum, Joshua B},
    journal={Science},
    volume={350},
    number={6266},
    pages={1332--1338},
    year={2015},
    publisher={American Association for the Advancement of Science}
}

预处理操作

mindspore.dataset.Dataset.apply

对数据集对象执行给定操作函数。

mindspore.dataset.Dataset.concat

对传入的多个数据集对象进行拼接操作。

mindspore.dataset.Dataset.filter

通过自定义判断条件对数据集对象中的数据进行过滤。

mindspore.dataset.Dataset.flat_map

对数据集对象中每一条数据执行给定的数据处理,并将结果展平。

mindspore.dataset.Dataset.map

给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。

mindspore.dataset.Dataset.project

从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。

mindspore.dataset.Dataset.rename

对数据集对象按指定的列名进行重命名。

mindspore.dataset.Dataset.repeat

重复此数据集 count 次。

mindspore.dataset.Dataset.reset

重置下一个epoch的数据集对象。

mindspore.dataset.Dataset.save

将数据处理管道中正处理的数据保存为通用的数据集格式。

mindspore.dataset.Dataset.shuffle

通过创建 buffer_size 大小的缓存来混洗该数据集。

mindspore.dataset.Dataset.skip

跳过此数据集对象的前 count 条数据。

mindspore.dataset.Dataset.split

将数据集拆分为多个不重叠的子数据集。

mindspore.dataset.Dataset.take

截取数据集的前指定条数据。

mindspore.dataset.Dataset.zip

将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。

Batch(批操作)

mindspore.dataset.Dataset.batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。

mindspore.dataset.Dataset.bucket_batch_by_length

根据数据的长度进行分桶。

mindspore.dataset.Dataset.padded_batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。

迭代器

mindspore.dataset.Dataset.create_dict_iterator

创建数据集迭代器,返回字典形式的样本,其中键为列名,值为数据。

mindspore.dataset.Dataset.create_tuple_iterator

创建数据集迭代器,返回列表形式的样本,其中的元素为各列数据。

数据集属性

mindspore.dataset.Dataset.get_batch_size

获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。

mindspore.dataset.Dataset.get_class_indexing

获取类别名称到类别索引的映射字典。

mindspore.dataset.Dataset.get_col_names

返回数据集对象中包含的列名。

mindspore.dataset.Dataset.get_dataset_size

返回一个epoch中的batch数。

mindspore.dataset.Dataset.get_repeat_count

获取 RepeatDataset 中定义的repeat操作的次数。

mindspore.dataset.Dataset.input_indexs

获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。

mindspore.dataset.Dataset.num_classes

获取数据集对象中所有样本的类别数目。

mindspore.dataset.Dataset.output_shapes

获取数据集对象中每列数据的shape。

mindspore.dataset.Dataset.output_types

获取数据集对象中每列数据的数据类型。

应用采样方法

mindspore.dataset.MappableDataset.add_sampler

为当前数据集添加子采样器。

mindspore.dataset.MappableDataset.use_sampler

替换当前数据集的最末子采样器,保持父采样器不变。

其他方法

mindspore.dataset.Dataset.sync_update

释放阻塞条件并使用给定数据触发回调函数。

mindspore.dataset.Dataset.sync_wait

为同步操作在数据集对象上添加阻塞条件。

mindspore.dataset.Dataset.to_json

将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。