mindspore.dataset.CityscapesDataset
- class mindspore.dataset.CityscapesDataset(dataset_dir, usage='train', quality_mode='fine', task='instance', num_samples=None, num_parallel_workers=None, shuffle=None, decode=None, sampler=None, num_shards=None, shard_id=None, cache=None)[源代码]
Cityscapes数据集。
生成的数据集有两列 [image, task] 。 image 列的数据类型为uint8。task 列的数据类型根据参数 task 的值而定,当参数 task 取值为
'polygon'
,列的数据类型为string,其他取值下,列的数据类型为uint8。- 参数:
dataset_dir (str) - 包含数据集文件的根目录路径。
usage (str, 可选) - 指定数据集的子集。当参数 quality_mode 取值为
'fine'
时,此参数可取值为'train'
、'test'
、'val'
或'all'
。 当参数 quality_mode 取值为'coarse'
时,此参数可取值为'train'
、'train_extra'
、'val'
或'all'
。默认值:'train'
,全部样本图片。quality_mode (str, 可选) - 指定数据集的质量模式,可取值为
'fine'
或'coarse'
。默认值:'fine'
。task (str, 可选) - 指定数据集的任务类型,可取值为
'instance'
、'semantic'
、'polygon'
或'color'
。默认值:'instance'
。num_samples (int, 可选) - 指定从数据集中读取的样本数,可以小于数据集总数。默认值:
None
,读取全部样本图片。num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值:
None
,使用全局默认线程数(8),也可以通过mindspore.dataset.config.set_num_parallel_workers()
配置全局线程数。shuffle (bool, 可选) - 是否混洗数据集。默认值:
None
。下表中会展示不同参数配置的预期行为。decode (bool, 可选) - 是否对读取的图片进行解码操作。默认值:
None
,默认为False
,不解码。sampler (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值:
None
。下表中会展示不同配置的预期行为。num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值:
None
。指定此参数后, num_samples 表示每个分片的最大样本数。一般在 数据并行模式训练 的时候使用。shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值:
None
。只有当指定了 num_shards 时才能指定此参数。cache (
DatasetCache
, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值:None
,不使用缓存。
样例:
>>> import mindspore.dataset as ds >>> cityscapes_dataset_dir = "/path/to/cityscapes_dataset_directory" >>> >>> # 1) Get all samples from Cityscapes dataset in sequence >>> dataset = ds.CityscapesDataset(dataset_dir=cityscapes_dataset_dir, task="instance", quality_mode="fine", ... usage="train", shuffle=False, num_parallel_workers=1) >>> >>> # 2) Randomly select 350 samples from Cityscapes dataset >>> dataset = ds.CityscapesDataset(dataset_dir=cityscapes_dataset_dir, num_samples=350, shuffle=True, ... num_parallel_workers=1) >>> >>> # 3) Get samples from Cityscapes dataset for shard 0 in a 2-way distributed training >>> dataset = ds.CityscapesDataset(dataset_dir=cityscapes_dataset_dir, num_shards=2, shard_id=0, ... num_parallel_workers=1) >>> >>> # In Cityscapes dataset, each dictionary has keys "image" and "task"
- 教程样例:
- 异常:
RuntimeError - dataset_dir 路径下不包含任何数据文件。
RuntimeError - 同时指定了 sampler 和 shuffle 参数。
RuntimeError - 同时指定了 sampler 和 num_shards 参数或同时指定了 sampler 和 shard_id 参数。
RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。
RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。
ValueError - num_parallel_workers 参数超过系统最大线程数。
ValueError - dataset_dir 路径非法或不存在。
ValueError - task 参数取值不为
'instance'
、'semantic'
、'polygon'
或'color'
。ValueError - quality_mode 参数取值不为
'fine'
或'coarse'
。ValueError - usage 参数取值不在给定的字段中。
ValueError - 如果 shard_id 取值不在[0, num_shards )范围。
说明
入参 num_samples 、 shuffle 、 num_shards 、 shard_id 可用于控制数据集所使用的采样器,其与入参 sampler 搭配使用的效果如下。
参数 sampler
参数 num_shards / shard_id
参数 shuffle
参数 num_samples
使用的采样器
mindspore.dataset.Sampler 类型
None
None
None
sampler
numpy.ndarray,list,tuple,int 类型
/
/
num_samples
SubsetSampler(indices = sampler , num_samples = num_samples )
iterable 类型
/
/
num_samples
IterSampler(sampler = sampler , num_samples = num_samples )
None
num_shards / shard_id
None / True
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = True , num_samples = num_samples )
None
num_shards / shard_id
False
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = False , num_samples = num_samples )
None
None
None / True
None
RandomSampler(num_samples = num_samples )
None
None
None / True
num_samples
RandomSampler(replacement = True , num_samples = num_samples )
None
None
False
num_samples
SequentialSampler(num_samples = num_samples )
关于Cityscapes数据集:
Cityscapes 数据集由来自 50 个城市的 24998 张彩色图像组成。 其中 5000 张图像具有高质量的密集像素标注,19998 张图像具有粗糙的多边形标注。 该数据集共有 30 个类,多边形标注包括密集语义分割,以及车辆和人的实例分割。
您可以解压缩原始数据集文件到如下目录结构,并通过MindSpore的API进行读取。
. └── Cityscapes ├── leftImg8bit | ├── train | | ├── aachen | | | ├── aachen_000000_000019_leftImg8bit.png | | | ├── aachen_000001_000019_leftImg8bit.png | | | ├── ... | | ├── bochum | | | ├── ... | | ├── ... | ├── test | | ├── ... | ├── val | | ├── ... └── gtFine ├── train | ├── aachen | | ├── aachen_000000_000019_gtFine_color.png | | ├── aachen_000000_000019_gtFine_instanceIds.png | | ├── aachen_000000_000019_gtFine_labelIds.png | | ├── aachen_000000_000019_gtFine_polygons.json | | ├── aachen_000001_000019_gtFine_color.png | | ├── aachen_000001_000019_gtFine_instanceIds.png | | ├── aachen_000001_000019_gtFine_labelIds.png | | ├── aachen_000001_000019_gtFine_polygons.json | | ├── ... | ├── bochum | | ├── ... | ├── ... ├── test | ├── ... └── val ├── ...
引用:
@inproceedings{Cordts2016Cityscapes, title = {The Cityscapes Dataset for Semantic Urban Scene Understanding}, author = {Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt}, booktitle = {Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2016} }
预处理操作
对数据集对象执行给定操作函数。 |
|
对传入的多个数据集对象进行拼接操作。 |
|
通过自定义判断条件对数据集对象中的数据进行过滤。 |
|
对数据集对象中每一条数据执行给定的数据处理,并将结果展平。 |
|
给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。 |
|
从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。 |
|
对数据集对象按指定的列名进行重命名。 |
|
重复此数据集 count 次。 |
|
重置下一个epoch的数据集对象。 |
|
将数据处理管道中正处理的数据保存为通用的数据集格式。 |
|
通过创建 buffer_size 大小的缓存来混洗该数据集。 |
|
跳过此数据集对象的前 count 条数据。 |
|
将数据集拆分为多个不重叠的子数据集。 |
|
截取数据集的前指定条数据。 |
|
将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。 |
Batch(批操作)
将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。 |
|
根据数据的长度进行分桶。 |
|
将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。 |
迭代器
创建数据集迭代器,返回字典形式的样本,其中键为列名,值为数据。 |
|
创建数据集迭代器,返回列表形式的样本,其中的元素为各列数据。 |
数据集属性
获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。 |
|
获取类别名称到类别索引的映射字典。 |
|
返回数据集对象中包含的列名。 |
|
返回一个epoch中的batch数。 |
|
获取 RepeatDataset 中定义的repeat操作的次数。 |
|
获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。 |
|
获取数据集对象中所有样本的类别数目。 |
|
获取数据集对象中每列数据的shape。 |
|
获取数据集对象中每列数据的数据类型。 |
应用采样方法
为当前数据集添加子采样器。 |
|
替换当前数据集的最末子采样器,保持父采样器不变。 |
其他方法
释放阻塞条件并使用给定数据触发回调函数。 |
|
为同步操作在数据集对象上添加阻塞条件。 |
|
将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。 |