mindspore.communication.comm_func.reduce_scatter_tensor
- mindspore.communication.comm_func.reduce_scatter_tensor(tensor, op=ReduceOp.SUM, group=GlobalComm.WORLD_COMM_GROUP, async_op=False)[源代码]
规约并且分发指定通信组中的张量,返回分发后的张量。
说明
在集合的所有过程中,Tensor必须具有相同的shape和格式。
- 参数:
tensor (Tensor) - 输入待规约且分发的Tensor,假设其形状为 \((N, *)\) ,其中 * 为任意数量的额外维度。N必须能够被rank_size整除,rank_size为当前通讯组里面的计算卡数量。
op (str, 可选) - 规约的具体操作。如
"sum"
、"prod"
、"max"
、和"min"
。默认值:ReduceOp.SUM
。group (str,可选) - 工作的通信组,默认值:
GlobalComm.WORLD_COMM_GROUP
(即Ascend平台为"hccl_world_group"
,GPU平台为"nccl_world_group"
)。async_op (bool, 可选) - 本算子是否是异步算子。默认值:
False
。
- 返回:
Tuple(Tensor, CommHandle),输出Tensor数据类型与 input_x 一致,shape为 \((N/rank\_size, *)\) 。 若 async_op 是True,CommHandle是一个异步工作句柄。若 async_op 是False,CommHandle将返回None。
- 异常:
TypeError - 首个输入的数据类型不为Tensor,op 和 group 不是字符串。
ValueError - 如果输入的第一个维度不能被rank size整除。
RuntimeError - 如果目标设备无效,或者后端无效,或者分布式初始化失败。
- 支持平台:
Ascend
样例:
>>> import numpy as np >>> import mindspore as ms >>> import mindspore.communication as comm >>> >>> ms.set_context(mode=ms.GRAPH_MODE) >>> comm.init() >>> input_tensor = ms.Tensor(np.ones([8, 8]).astype(np.float32)) >>> output, _ = comm.comm_func.reduce_scatter_tensor(input_tensor) >>> print(output) [[2. 2. 2. 2. 2. 2. 2. 2.] [2. 2. 2. 2. 2. 2. 2. 2.] [2. 2. 2. 2. 2. 2. 2. 2.] [2. 2. 2. 2. 2. 2. 2. 2.]]