mindspore.ops.multilabel_margin_loss

mindspore.ops.multilabel_margin_loss(input, target, reduction='mean')[source]

Hinge loss for optimizing a multi-label classification.

Creates a criterion that optimizes a multi-label multi-classification hinge loss (margin-based loss) between input x (a 2D mini-batch Tensor) and output y (which is a 2D Tensor of target class indices). For each sample in the mini-batch:

loss(x,y)=ijmax(0,1(x[y[j]]x[i]))x.size(0)

where x{0,,x.size(0)1}, y{0,,y.size(0)1}, 0y[j]x.size(0)1, and iy[j] for all i and j. y and x must have the same size. The criterion only considers a contiguous block of non-negative targets that starts at the front. This allows for different samples to have variable amounts of target classes.

Parameters
  • input (Tensor) – Predict data, x in the formula above. Tensor of shape (C) or (N,C), where N is the batch size and C is the number of classes. Data type must be float16 or float32.

  • target (Tensor) – Ground truth data, y in the formula above, with the same shape as input, data type must be int32 and label targets padded by -1.

  • reduction (str, optional) –

    Apply specific reduction method to the output: 'none' , 'mean' , 'sum' . Default: 'mean' .

    • 'none': no reduction will be applied.

    • 'mean': compute and return the mean of elements in the output.

    • 'sum': the output elements will be summed.

Returns

  • outputs (Union[Tensor, Scalar]) - The loss of MultilabelMarginLoss. If reduction is "none", its shape is (N). Otherwise, a scalar value will be returned.

Raises
  • TypeError – If input or target is not a Tensor.

  • TypeError – If dtype of input is neither float16 nor float32.

  • TypeError – If dtype of target is not int32.

  • ValueError – If length of shape of input is neither 1 nor 2.

  • ValueError – If shape of input is not the same as target.

  • ValueError – If reduction is not one of 'none', 'mean', 'sum'.

Supported Platforms:

Ascend GPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> inputs = Tensor(np.array([[0.1, 0.2, 0.4, 0.8], [0.2, 0.3, 0.5, 0.7]]), mindspore.float32)
>>> target = Tensor(np.array([[1, 2, 0, 3], [2, 3, -1, 1]]), mindspore.int32)
>>> output = ops.multilabel_margin_loss(inputs, target)
>>> print(output)
0.325