mindspore.ops.approximate_equal
- mindspore.ops.approximate_equal(x, y, tolerance=1e-5)[source]
Returns
True
if abs(x-y) is smaller than tolerance element-wise, otherwiseFalse
.\[\begin{split}out_i = \begin{cases} & \text{ if } \left | x_{i} - y_{i} \right | < \text{tolerance},\ \ True \\ & \text{ if } \left | x_{i} - y_{i} \right | \ge \text{tolerance},\ \ False \end{cases}\end{split}\]where tolerance indicates Acceptable maximum tolerance.
Inputs of x and y comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower precision data type will be converted to the relatively highest precision data type.
- Parameters
- Returns
Tensor, the shape is the same as the shape of x, and the data type is bool.
- Raises
TypeError – If tolerance is not a float.
RuntimeError – If the data type of x, y conversion of Parameter is given but data type conversion of Parameter is not supported.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor, ops >>> from mindspore import dtype as mstype >>> tol = 1.5 >>> x = Tensor(np.array([1, 2, 3]), mstype.float32) >>> y = Tensor(np.array([2, 4, 6]), mstype.float32) >>> output = ops.approximate_equal(Tensor(x), Tensor(y), tol) >>> print(output) [ True False False]