mindspore.nn.RReLU
- class mindspore.nn.RReLU(lower=1 / 8, upper=1 / 3)[source]
Randomized Leaky ReLU activation function.
The activation function is defined as:
\[\text{RReLU}(x_{ji}) = \begin{cases}x_{ji}, &\text{if } x_{ji} \geq 0; \cr {\alpha_{ji}} * x_{ji}, &\text{otherwise.}\end{cases}\]where \(\alpha_{ji}\) ~ \(U(l, u)\), \(l \le u\).
Applies the RReLU function elementally, as described in the paper: Empirical Evaluation of Rectified Activations in Convolution Network .
- Parameters
- Inputs:
x (Tensor) - The input of RReLU is a Tensor of any dimension.
- Outputs:
Tensor, after RReLU, has the same type and shape as the x.
- Raises
TypeError – If lower is not a float or an int.
TypeError – If upper is not a float or an int.
TypeError – If x is not a Tensor.
TypeError – If x is not a Tensor of mindspore.float16 or mindpore.float32.
ValueError – If lower is greater than upper.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> from mindspore import Tensor, nn >>> import numpy as np >>> x = Tensor(np.array([[-1.0, 4.0], [2.0, 0]]), mindspore.float32) >>> r_relu = nn.RReLU() >>> output = r_relu(x) >>> print(output) [[-0.31465699 4. ] [ 2. 0. ]]