Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.softmin

mindspore.ops.softmin(x, axis=- 1, *, dtype=None)[source]

Applies the Softmin operation to the input tensor on the specified axis. Suppose a slice in the given axis x, then for each element xi, the Softmin function is shown as follows:

output(xi)=exp(xi)j=0N1exp(xj),

where N is the length of the tensor.

Parameters
  • axis (Union[int, tuple[int]], optional) – The axis to perform the Softmin operation. Default: -1 .

  • x (Tensor) – Tensor of shape (N,), where means, any number of additional dimensions, with float16 or float32 data type.

Keyword Arguments

dtype (mindspore.dtype, optional) – When set, x will be converted to the specified type, dtype, before execution, and dtype of returned Tensor will also be dtype. Default: None .

Returns

Tensor, with the same type and shape as the logits.

Raises
  • TypeError – If axis is not an int or a tuple.

  • TypeError – If dtype of x is neither float16 nor float32.

  • ValueError – If axis is a tuple whose length is less than 1.

  • ValueError – If axis is a tuple whose elements are not all in range [-len(logits.shape), len(logits.shape)).

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> output = ops.softmin(x)
>>> print(output)
[0.2341  0.636  0.0862  0.01165  0.03168 ]