mindspore.ops.sigmoid

mindspore.ops.sigmoid(input)[source]

Computes Sigmoid of input element-wise. The Sigmoid function is defined as:

\[\text{sigmoid}(input_i) = \frac{1}{1 + \exp(-input_i)}\]

where \(input_i\) is an element of the input.

Parameters

input (Tensor) – Tensor of any dimension, the data type is float16, float32, float64, complex64 or complex128.

Returns

Tensor, with the same type and shape as the input.

Raises
  • TypeError – If dtype of input is not float16, float32, float64, complex64 or complex128.

  • TypeError – If input is not a Tensor.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> output = ops.sigmoid(input)
>>> print(output)
[0.7310586  0.880797   0.95257413 0.98201376 0.9933072 ]