mindspore.nn.ForwardValueAndGrad
- class mindspore.nn.ForwardValueAndGrad(network, weights=None, get_all=False, get_by_list=False, sens_param=False)[source]
Encapsulate training network.
Including the network and a gradient function. The resulting Cell is trained with input ‘*inputs’. The backward graph will be created in the gradient function to calculating gradient.
- Parameters
network (Cell) – The training network.
weights (ParameterTuple) – The parameters of the training network that need to calculate the gradient. Default:
None
.get_all (bool) – If
True
, get all the gradients with respect to inputs. Default:False
.get_by_list (bool) – If
True
s, get all the gradients with respect to Parameter variables. If get_all and get_by_list are bothFalse
, get the gradient with respect to first input. If get_all and get_by_list are bothTrue
, get the gradients with respect to inputs and Parameter variables at the same time in the form of ((gradients with respect to inputs), (gradients with respect to parameters)). Default:False
.sens_param (bool) – Whether to append sensitivity (gradient with respect to output) as input. If sens_param is
False
, a ‘ones_like(outputs)’ sensitivity will be attached automatically. Default:False
. If the sens_param isTrue
, a sensitivity (gradient with respect to output) needs to be transferred through the input parameter.
- Inputs:
*inputs (Tuple(Tensor…)) - Tuple of inputs with shape \((N, \ldots)\).
sens - A sensitivity (gradient with respect to output) as the input of backpropagation. If network has single output, the sens is a tensor. If network has multiple outputs, the sens is the tuple(tensor).
- Outputs:
forward value - The result of network forward running.
gradients (tuple(tensor)) - The gradients of network parameters and inputs.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> import mindspore >>> from mindspore import Tensor, nn, ops, ParameterTuple, Parameter >>> >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.weight = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="weight") ... self.matmul = ops.MatMul() ... ... def construct(self, x): ... out = self.matmul(x, self.weight) ... return out ... >>> net = Net() >>> criterion = nn.SoftmaxCrossEntropyWithLogits() >>> net_with_criterion = nn.WithLossCell(net, criterion) >>> weight = ParameterTuple(net.trainable_params()) >>> train_network = nn.ForwardValueAndGrad(net_with_criterion, weights=weight, get_all=True, get_by_list=True) >>> inputs = Tensor(np.ones([1, 2]).astype(np.float32)) >>> labels = Tensor(np.ones([1, 2]).astype(np.float32)) >>> result = train_network(inputs, labels) >>> print(result) (Tensor(shape=[1], dtype=Float32, value= [ 1.38629436e+00]), ((Tensor(shape=[1, 2], dtype=Float32, value= [[ -1.00000000e+00, -1.00000000e+00]]), Tensor(shape=[1, 2], dtype=Float32, value= [[ 0.00000000e+00, 0.00000000e+00]])), (Tensor(shape=[2, 2], dtype=Float32, value= [[ -5.00000000e-01, -5.00000000e-01], [ -5.00000000e-01, -5.00000000e-01]]),)))