mindspore.nn.DistributedGradReducer
- class mindspore.nn.DistributedGradReducer(parameters, mean=None, degree=None, fusion_type=1, group=GlobalComm.WORLD_COMM_GROUP)[source]
A distributed optimizer.
Aggregate the gradients for all cards by using AllReduce in data parallel.
- Parameters
parameters (list) – the parameters to be updated.
mean (bool) – When mean is true, the mean coefficient (degree) would apply on gradients. When it is not specified, using the configuration gradients_mean in auto_parallel_context. Default:
None
.degree (int) – The mean coefficient. Usually it equals to device number. Default:
None
.fusion_type (int) – The type of all reduce fusion. Default:
1
.group (str) – The communication group to work on. Normally, the group should be created by create_group, otherwise, using the default group. Default:
GlobalComm.WORLD_COMM_GROUP
.
- Raises
ValueError – If degree is not an int or less than 0.
- Supported Platforms:
Ascend
GPU
Examples
Note
Before running the following examples, you need to configure the communication environment variables.
For the Ascend devices, users need to prepare the rank table, set rank_id and device_id. Please see the Ascend tutorial for more details.
For the GPU devices, users need to prepare the host file and mpi, please see the GPU tutorial .
This example should be run with multiple devices.
>>> import numpy as np >>> import mindspore as ms >>> from mindspore.communication import init >>> from mindspore import Parameter, Tensor, ops, nn >>> >>> ms.set_context(mode=ms.GRAPH_MODE) >>> init() >>> ms.reset_auto_parallel_context() >>> ms.set_auto_parallel_context(parallel_mode=ms.ParallelMode.DATA_PARALLEL) >>> >>> class TrainingWrapper(nn.Cell): ... def __init__(self, network, optimizer, sens=1.0): ... super(TrainingWrapper, self).__init__(auto_prefix=False) ... self.network = network ... self.network.add_flags(defer_inline=True) ... self.weights = optimizer.parameters ... self.optimizer = optimizer ... self.grad = ops.GradOperation(get_by_list=True, sens_param=True) ... self.sens = sens ... self.reducer_flag = False ... self.grad_reducer = None ... self.parallel_mode = context.get_auto_parallel_context("parallel_mode") ... self.depend = ops.Depend() ... if self.parallel_mode in [ms.ParallelMode.DATA_PARALLEL, ms.ParallelMode.HYBRID_PARALLEL]: ... self.reducer_flag = True ... if self.reducer_flag: ... mean = context.get_auto_parallel_context("gradients_mean") ... degree = context.get_auto_parallel_context("device_num") ... self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) ... ... def construct(self, *args): ... weights = self.weights ... loss = self.network(*args) ... sens = ops.Fill()(ops.DType()(loss), ops.Shape()(loss), self.sens) ... grads = self.grad(self.network, weights)(*args, sens) ... if self.reducer_flag: ... # apply grad reducer on grads ... grads = self.grad_reducer(grads) ... return self.depend(loss, self.optimizer(grads)) >>> >>> class Net(nn.Cell): ... def __init__(self, in_features, out_features): ... super(Net, self).__init__() ... self.weight = Parameter(Tensor(np.ones([in_features, out_features]).astype(np.float32)), ... name='weight') ... self.matmul = ops.MatMul() ... ... def construct(self, x): ... output = self.matmul(x, self.weight) ... return output >>> >>> size, in_features, out_features = 16, 16, 10 >>> network = Net(in_features, out_features) >>> loss = nn.MSELoss() >>> net_with_loss = nn.WithLossCell(network, loss) >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> train_cell = TrainingWrapper(net_with_loss, optimizer) >>> inputs = Tensor(np.ones([size, in_features]).astype(np.float32)) >>> label = Tensor(np.zeros([size, out_features]).astype(np.float32)) >>> grads = train_cell(inputs, label) >>> print(grads) 256.0