mindspore.dataset.NumpySlicesDataset
- class mindspore.dataset.NumpySlicesDataset(data, column_names=None, num_samples=None, num_parallel_workers=1, shuffle=None, sampler=None, num_shards=None, shard_id=None)[source]
Creates a dataset with given data slices, mainly for loading Python data into dataset.
The column names and column types of generated dataset depend on Python data defined by users.
- Parameters
data (Union[list, tuple, dict]) – list, tuple, dict and other NumPy formats. Input data will be sliced along the first dimension and generate additional rows, if input is list, there will be one column in each row, otherwise there tends to be multi columns. Large data is not recommended to be loaded in this way as data is loading into memory.
column_names (list[str], optional) – List of column names of the dataset. Default:
None
. If column_names is not provided, the output column names will be named as the keys of dict when the input data is a dict, otherwise they will be named like column_0, column_1 …num_samples (int, optional) – The number of samples to be included in the dataset. Default:
None
, all samples.num_parallel_workers (int, optional) – Number of worker subprocesses used to fetch the dataset in parallel. Default:
1
.shuffle (bool, optional) – Whether or not to perform shuffle on the dataset. Default:
None
, expected order behavior shown in the table below.sampler (Union[Sampler, Iterable], optional) – Object used to choose samples from the dataset. Default:
None
, expected order behavior shown in the table below.num_shards (int, optional) – Number of shards that the dataset will be divided into. Default:
None
. When this argument is specified, num_samples reflects the max sample number of per shard.shard_id (int, optional) – The shard ID within num_shards . Default:
None
. This argument must be specified only when num_shards is also specified.
Note
This dataset can take in a sampler . sampler and shuffle are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior.
Parameter sampler
Parameter shuffle
Expected Order Behavior
None
None
random order
None
True
random order
None
False
sequential order
Sampler object
None
order defined by sampler
Sampler object
True
not allowed
Sampler object
False
not allowed
- Raises
RuntimeError – If len of column_names does not match output len of data.
ValueError – If num_parallel_workers exceeds the max thread numbers.
ValueError – If sampler and shuffle are specified at the same time.
ValueError – If sampler and sharding are specified at the same time.
ValueError – If num_shards is specified but shard_id is None.
ValueError – If shard_id is specified but num_shards is None.
ValueError – If shard_id is not in range of [0, num_shards ).
- Tutorial Examples:
Examples
>>> import mindspore.dataset as ds >>> # 1) Input data can be a list >>> data = [1, 2, 3] >>> dataset = ds.NumpySlicesDataset(data=data, column_names=["column_1"]) >>> >>> # 2) Input data can be a dictionary, and column_names will be its keys >>> data = {"a": [1, 2], "b": [3, 4]} >>> dataset = ds.NumpySlicesDataset(data=data) >>> >>> # 3) Input data can be a tuple of lists (or NumPy arrays), each tuple element refers to data in each column >>> data = ([1, 2], [3, 4], [5, 6]) >>> dataset = ds.NumpySlicesDataset(data=data, column_names=["column_1", "column_2", "column_3"]) >>> >>> # 4) Load data from CSV file >>> import pandas as pd >>> df = pd.read_csv(filepath_or_buffer=csv_dataset_dir[0]) >>> dataset = ds.NumpySlicesDataset(data=dict(df), shuffle=False)
Pre-processing Operation
Apply a function in this dataset. |
|
Concatenate the dataset objects in the input list. |
|
Filter dataset by prediction. |
|
Map func to each row in dataset and flatten the result. |
|
Apply each operation in operations to this dataset. |
|
The specified columns will be selected from the dataset and passed into the pipeline with the order specified. |
|
Rename the columns in input datasets. |
|
Repeat this dataset count times. |
|
Reset the dataset for next epoch. |
|
Save the dynamic data processed by the dataset pipeline in common dataset format. |
|
Shuffle the dataset by creating a cache with the size of buffer_size . |
|
Skip the first N elements of this dataset. |
|
Split the dataset into smaller, non-overlapping datasets. |
|
Takes at most given numbers of elements from the dataset. |
|
Zip the datasets in the sense of input tuple of datasets. |
Batch
Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first. |
|
Bucket elements according to their lengths. |
|
Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first. |
Iterator
Create an iterator over the dataset. |
|
Create an iterator over the dataset. |
Attribute
Return the size of batch. |
|
Return the class index. |
|
Return the names of the columns in dataset. |
|
Return the number of batches in an epoch. |
|
Get the replication times in RepeatDataset. |
|
Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode. |
|
Get the number of classes in a dataset. |
|
Get the shapes of output data. |
|
Get the types of output data. |
Apply Sampler
Add a child sampler for the current dataset. |
|
Replace the last child sampler of the current dataset, remaining the parent sampler unchanged. |
Others
Return a transferred Dataset that transfers data through a device. |
|
Release a blocking condition and trigger callback with given data. |
|
Add a blocking condition to the input Dataset and a synchronize action will be applied. |
|
Serialize a pipeline into JSON string and dump into file if filename is provided. |