Function Differences with torch.nn.MSELoss
torch.nn.MSELoss
torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')(input, target) -> Tensor
For more information, see torch.nn.MSELoss.
mindspore.nn.MSELoss
class mindspore.nn.MSELoss(reduction='mean')(logits, labels) -> Tensor
For more information, see mindspore.nn.MSELoss.
Differences
PyTorch: Used to calculate the mean square error for each element of the input and target. The reduction parameter specifies the type of statute applied to the loss.
MindSpore: Implement functions consistent with PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter 1 |
size_average |
- |
Deprecated, replaced by reduction |
Parameter 2 |
reduce |
- |
Deprecated, replaced by reduction |
|
Parameter 3 |
reduction |
reduction |
- |
|
Inputs |
Input 1 |
input |
logits |
Same function, different parameter names |
Input 2 |
target |
labels |
Same function, different parameter names |
Code Example 1
Compute the mean square error of
input
andtarget
. By default,reduction='mean'
.
# PyTorch
import torch
from torch import nn
from torch import tensor
import numpy as np
loss = nn.MSELoss()
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = tensor(input_, dtype=torch.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = tensor(target_, dtype=torch.float32)
output = loss(inputs, target)
print(output.numpy())
# 0.5
# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np
loss = nn.MSELoss()
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = Tensor(input_, dtype=mindspore.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = Tensor(target_, dtype=mindspore.float32)
output = loss(inputs, target)
print(output)
# 0.5
Code Example 2
Compute the mean square error of
input
andtarget
for the summation mode statute.
# PyTorch
import torch
from torch import nn
from torch import tensor
import numpy as np
loss = nn.MSELoss(reduction='sum')
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = tensor(input_, dtype=torch.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = tensor(target_, dtype=torch.float32)
output = loss(inputs, target)
print(output.numpy())
# 2.0
# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np
loss = nn.MSELoss(reduction='sum')
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = Tensor(input_, dtype=mindspore.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = Tensor(target_, dtype=mindspore.float32)
output = loss(inputs, target)
print(output)
# 2.0