# Function Differences with torch.nn.MSELoss [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MSELoss.md) ## torch.nn.MSELoss ```text torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')(input, target) -> Tensor ``` For more information, see [torch.nn.MSELoss](https://pytorch.org/docs/1.8.1/generated/torch.nn.MSELoss.html). ## mindspore.nn.MSELoss ```text class mindspore.nn.MSELoss(reduction='mean')(logits, labels) -> Tensor ``` For more information, see [mindspore.nn.MSELoss](https://www.mindspore.cn/docs/en/r2.0/api_python/nn/mindspore.nn.MSELoss.html). ## Differences PyTorch: Used to calculate the mean square error for each element of the input and target. The reduction parameter specifies the type of statute applied to the loss. MindSpore: Implement functions consistent with PyTorch. | Categories | Subcategories |PyTorch | MindSpore | Difference | | ---- | ----- | ------- | --------- | ------------- | | Parameters | Parameter 1 | size_average | - | Deprecated, replaced by reduction | | | Parameter 2 | reduce | - | Deprecated, replaced by reduction | | | Parameter 3 | reduction | reduction | - | |Inputs | Input 1 | input | logits | Same function, different parameter names | | | Input 2 | target | labels | Same function, different parameter names | ### Code Example 1 > Compute the mean square error of `input` and `target`. By default, `reduction='mean'`. ```python # PyTorch import torch from torch import nn from torch import tensor import numpy as np loss = nn.MSELoss() input_ = np.array([1, 1, 1, 1]).reshape((2, 2)) inputs = tensor(input_, dtype=torch.float32) target_ = np.array([1, 2, 2, 1]).reshape((2, 2)) target = tensor(target_, dtype=torch.float32) output = loss(inputs, target) print(output.numpy()) # 0.5 # MindSpore import mindspore from mindspore import Tensor import mindspore.nn as nn import numpy as np loss = nn.MSELoss() input_ = np.array([1, 1, 1, 1]).reshape((2, 2)) inputs = Tensor(input_, dtype=mindspore.float32) target_ = np.array([1, 2, 2, 1]).reshape((2, 2)) target = Tensor(target_, dtype=mindspore.float32) output = loss(inputs, target) print(output) # 0.5 ``` ### Code Example 2 > Compute the mean square error of `input` and `target` for the summation mode statute. ```python # PyTorch import torch from torch import nn from torch import tensor import numpy as np loss = nn.MSELoss(reduction='sum') input_ = np.array([1, 1, 1, 1]).reshape((2, 2)) inputs = tensor(input_, dtype=torch.float32) target_ = np.array([1, 2, 2, 1]).reshape((2, 2)) target = tensor(target_, dtype=torch.float32) output = loss(inputs, target) print(output.numpy()) # 2.0 # MindSpore import mindspore from mindspore import Tensor import mindspore.nn as nn import numpy as np loss = nn.MSELoss(reduction='sum') input_ = np.array([1, 1, 1, 1]).reshape((2, 2)) inputs = Tensor(input_, dtype=mindspore.float32) target_ = np.array([1, 2, 2, 1]).reshape((2, 2)) target = Tensor(target_, dtype=mindspore.float32) output = loss(inputs, target) print(output) # 2.0 ```