Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.tensor_dot

mindspore.ops.tensor_dot(x1, x2, axes)[source]

Computation of Tensor contraction on arbitrary axes between tensors a and b.

Contraction allows for the summation of products of elements of a and b on specified axes. The same number of axes must be specified for both x1 and x2, and values must be within range of number of dims of both a and b.

Selected dims in both inputs must also match.

axes = 0 leads to outer product. axes = 1 leads to normal matrix multiplication when inputs both 2D. axes = 1 is the same as axes = ((1,),(0,)) where both a and b are 2D. axes = 2 is the same as axes = ((1,2),(0,1)) where both a and b are 3D.

Parameters
  • x1 (Tensor) – First tensor in tensor_dot with datatype float16 or float32

  • x2 (Tensor) – Second tensor in tensor_dot with datatype float16 or float32

  • axes (Union[int, tuple(int), tuple(tuple(int)), list(list(int))]) – Single value or tuple/list of length 2 with dimensions specified for a and b each. If single value N passed, automatically picks up last N dims from a input shape and first N dims from b input shape in order as axes for each respectively.

Returns

Tensor, the shape of the output tensor is (N+M). Where N and M are the free axes not contracted in both inputs

Raises
  • TypeError – If x1 or x2 is not a Tensor.

  • TypeError – If axes is not one of the following: int, tuple, list.

Supported Platforms:

Ascend GPU CPU

Examples

>>> from mindspore import Tensor, ops
>>> import mindspore
>>> import numpy as np
>>> input_x1 = Tensor(np.ones(shape=[1, 2, 3]), mindspore.float32)
>>> input_x2 = Tensor(np.ones(shape=[3, 1, 2]), mindspore.float32)
>>> output = ops.tensor_dot(input_x1, input_x2, ((0,1),(1,2)))
>>> print(output)
[[2. 2. 2]
 [2. 2. 2]
 [2. 2. 2]]