Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.ormqr

mindspore.ops.ormqr(input, tau, other, left=True, transpose=False)[source]

Calculates two matrices multiplication of a product of a general matrix with Householder matrices. Calculates the product of a matrix C(given by other) with dimensions (m, n) and a matrix Q which is represented using Householder reflectors (input, tau). Returns a Tensor.

Warning

This is an experimental API that is subject to change or deletion.

Parameters
  • input (Tensor) – Tensor of shape (,mn,k), when left is True, mn equals to m, otherwise, mn equals to n. And * is zero or more batch dimensions.

  • tau (Tensor) – Tensor of shape (,min(mn,k)) where * is zero or more batch dimensions, and its type is the same as input.

  • other (Tensor) – Tensor of shape (,m,n) where * is zero or more batch dimensions, and its type is the same as input.

  • left (bool, optional) – determines the order of multiplication. If True, computes op(Q) * other , otherwise, compute other * op(Q). Default: True.

  • transpose (bool, optional) – If True, the matrix Q is conjugate transposed, otherwise, not conjugate transposing matrix Q. Default: False.

Returns

Tensor, with the same type and shape as other.

Raises
  • TypeError – If input or tau or other is not Tensor.

  • TypeError – If dtype of input or tau or other is not one of: float64, float32, complex64, complex128.

  • ValueError – If the dimension of input or other is less than 2D.

  • ValueError – If rank(input) - rank(tau) != 1.

  • ValueError – If tau.shape[:-2] != input.shape[:-2]

  • ValueError – If other.shape[:-2] != input.shape[:-2]

  • ValueError – If left == true, other.shape[-2] < tau.shape[-1].

  • ValueError – If left == true, other.shape[-2] != input.shape[-2].

  • ValueError – If left == false, other.shape[-1] < tau.shape[-1].

  • ValueError – If left == false, other.shape[-1] != input.shape[-2].

Supported Platforms:

GPU

Examples

>>> input = Tensor(np.array([[-114.6, 10.9, 1.1], [-0.304, 38.07, 69.38], [-0.45, -0.17, 62]]),
>>>                mindspore.float32)
>>> tau = Tensor(np.array([1.55, 1.94, 3.0]), mindspore.float32)
>>> other = Tensor(np.array([[-114.6, 10.9, 1.1],
>>>                          [-0.304, 38.07, 69.38],
>>>                          [-0.45, -0.17, 62]]), mindspore.float32)
>>> output = ops.ormqr(input, tau, other)
>>> print(output)
[[  63.82713   -13.823125 -116.28614 ]
 [ -53.659264  -28.157839  -70.42702 ]
 [ -79.54292    24.00183   -41.34253 ]]