mindspore.ops.Select
- class mindspore.ops.Select[source]
The conditional tensor determines whether the corresponding element in the output must be selected from x (if True) or y (if False) based on the value of each element.
It can be defined as:
\[\begin{split}out_i = \begin{cases} x_i, & \text{if } condition_i \\ y_i, & \text{otherwise} \end{cases}\end{split}\]- Inputs:
condition (Tensor[bool]) - The condition tensor, decides which element is chosen. The shape is \((x_1, x_2, ..., x_N, ..., x_R)\).
x (Tensor) - The first tensor to be selected and the shape is \((x_1, x_2, ..., x_N, ..., x_R)\).
y (Tensor) - The second tensor to be selected and the shape is \((x_1, x_2, ..., x_N, ..., x_R)\).
- Outputs:
Tensor, has the same shape as condition.
- Raises
TypeError – If x or y is not a Tensor.
ValueError – If shape of the three inputs are different.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> select = ops.Select() >>> input_cond = Tensor([True, False]) >>> input_x = Tensor([2,3], mindspore.float32) >>> input_y = Tensor([1,2], mindspore.float32) >>> output = select(input_cond, input_x, input_y) >>> print(output) [2. 2.]