mindspore.ops.MatrixSetDiagV3
- class mindspore.ops.MatrixSetDiagV3(align='RIGHT_LEFT')[source]
Updates the diagonal part of a batched tensor. It takes an Tensor x and diagonal as input and returns a Tensor in which the specified diagonal values in the innermost matrices will be replaced by the values in the diagonal.
Diagonals shorter than max_diag_len need to be padded, where max_diag_len is the longest diagonal value. The dimension of diagonal is \(shape[-2]\) must be equal to num_diags calculated by \(num\_diags = k[1] - k[0] + 1\). The dimension of diagonal is \(shape[-1]\) must be equal to the longest diagonal value max_diag_len calculated by \(max\_diag\_len = min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0))\).
Assume x is an n-D Tensor with shape \((d_1, d_2, ..., d_{n-2}, d_{n-1}, d_n)\). If k is an integer or \(k[0] == k[1]\), diagonal is an (n-1)-D Tensor with shape \((d_1, d_2, ..., d_{n-2}, max\_diag\_len)\) Otherwise, it has the same rank as x with shape \((d_1, d_2, ..., d_{n-2}, num\_diags, max\_diag\_len)\).
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
align (str, optional) –
specifies how superdiagonals and subdiagonals should be aligned. Supported values:”RIGHT_LEFT”, “LEFT_RIGHT”, “LEFT_LEFT”, “RIGHT_RIGHT”. Default: “RIGHT_LEFT”.
When set to “RIGHT_LEFT”, the alignment of superdiagonals will be towards the right side (padding the row on the left), while subdiagonals will be towards the left side (padding the row on the right)
When set to “LEFT_RIGHT”, the alignment of superdiagonals will be towards the left side (padding the row on the right), while subdiagonals will be towards the right side (padding the row on the left)
When set to “LEFT_LEFT”, the alignment of both superdiagonals and subdiagonals will be towards the left side(padding the row on the right).
When set to “RIGHT_RIGHT”, the alignment of both superdiagonals and subdiagonals will be towards the right side(padding the row on the left).
- Inputs:
x (Tensor) - A n-D Tensor, where \(n >= 2\).
diagonal (Tensor) - A Tensor with the same dtype as x. Its rank depends on k. If k is an integer or \(k[0] == k[1]\), its dimension is \(n-1\). Otherwise, it has dimension \(n\).
k (Tensor) - Diagonal offset(s), Tensor of type int32. k can either be a single integer, which represents a single diagonal, or a pair of integers that specify the low and high ends of a matrix band. In this case, k[0] should not be greater than k[1]. The value of k has restructions, which means that value of k must be in range \((-x.shape[-2], x.shape[-1])\). Input k must be const Tensor when taking Graph mode.
k > 0 refers to a superdiagonal.
k = 0 refers to the main diagonal.
k < 0 refers to subdiagonals.
- Outputs:
Tensor. The same type and shape as x.
- Raises
TypeError – If any input is not Tensor.
TypeError – If input x and diagonal are not the same dtype.
TypeError – If k is not int32 dtype.
ValueError – If align is not a string or not in the valid range.
ValueError – If rank of k is not equal to 0 or 1.
ValueError – If rank of x is not greater equal to 2.
ValueError – If size of k is not equal to 1 or 2.
ValueError – If k[1] is not greater equal to k[0] in case the size of k is 2.
ValueError – If the diagonal rank size don’t match with input x rank size.
ValueError – If the diagonal shape value don’t match with input x shape value.
ValueError – If the diagonal \(shape[-2]\) is not equal to num_diags calculated by \(k[1] - k[0] + 1\) .
ValueError – If the value of k is not in \((-x.shape[-2], x.shape[-1])\).
ValueError – If the diagonal \(shape[-1]\) is not equal to the max_diag_len calculated by \(min(x.shape[-2] + min(k[1], 0), x.shape[-1] + min(-k[0], 0))\) .
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> x = Tensor(np.array([[7, 7, 7, 7], ... [7, 7, 7, 7], ... [7, 7, 7, 7]]), mindspore.float32) >>> diagonal = Tensor(np.array([[0, 9, 1], ... [6, 5, 8], ... [1, 2, 3], ... [4, 5, 0]]), mindspore.float32) >>> k =Tensor(np.array([-1, 2]), mindspore.int32) >>> matrix_set_diag_v3 = ops.MatrixSetDiagV3(align='RIGHT_LEFT') >>> output = matrix_set_diag_v3(x, diagonal, k) >>> print(output) [[1. 6. 9. 7.] [4. 2. 5. 1.] [7. 5. 3. 8.]] >>> print(output.shape) (3, 4)