mindspore.dataset.vision.RandomResizedCropWithBBox

class mindspore.dataset.vision.RandomResizedCropWithBBox(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=Inter.BILINEAR, max_attempts=10)[source]

Crop the input image to a random size and aspect ratio and adjust bounding boxes accordingly.

Parameters
  • size (Union[int, Sequence[int]]) – The size of the output image. The size value(s) must be positive. If size is an integer, a square crop of size (size, size) is returned. If size is a sequence of length 2, it should be (height, width).

  • scale (Union[list, tuple], optional) – Range (min, max) of respective size of the original size to be cropped, which must be non-negative. Default: (0.08, 1.0).

  • ratio (Union[list, tuple], optional) – Range (min, max) of aspect ratio to be cropped, which must be non-negative. Default: (3. / 4., 4. / 3.).

  • interpolation (Inter, optional) –

    Image interpolation mode. Default: Inter.BILINEAR. It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC].

    • Inter.BILINEAR, means interpolation method is bilinear interpolation.

    • Inter.NEAREST, means interpolation method is nearest-neighbor interpolation.

    • Inter.BICUBIC, means interpolation method is bicubic interpolation.

  • max_attempts (int, optional) – The maximum number of attempts to propose a valid crop area. Default: 10. If exceeded, fall back to use center crop instead.

Raises
  • TypeError – If size is not of type int or Sequence[int].

  • TypeError – If scale is not of type tuple.

  • TypeError – If ratio is not of type tuple.

  • TypeError – If interpolation is not of type Inter.

  • TypeError – If max_attempts is not of type integer.

  • ValueError – If size is not positive.

  • ValueError – If scale is negative.

  • ValueError – If ratio is negative.

  • ValueError – If max_attempts is not positive.

  • RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.

Supported Platforms:

CPU

Examples

>>> from mindspore.dataset.vision import Inter
>>> decode_op = vision.Decode()
>>> bbox_op = vision.RandomResizedCropWithBBox(size=50, interpolation=Inter.NEAREST)
>>> transforms_list = [decode_op, bbox_op]
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list,
...                                                 input_columns=["image"])