mindspore.dataset.vision.Perspective
- class mindspore.dataset.vision.Perspective(start_points, end_points, interpolation=Inter.BILINEAR)[source]
Apply perspective transformation on input image.
- Parameters
start_points (Sequence[Sequence[int, int]]) – Sequence of the starting point coordinates, containing four two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the quadrilateral in the original image.
end_points (Sequence[Sequence[int, int]]) – Sequence of the ending point coordinates, containing four two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the quadrilateral in the target image.
interpolation (Inter, optional) –
Method of interpolation. It can be Inter.BILINEAR, Inter.LINEAR, Inter.NEAREST, Inter.AREA, Inter.PILCUBIC, Inter.CUBIC or Inter.BICUBIC. Default: Inter.BILINEAR.
Inter.BILINEAR, bilinear interpolation.
Inter.LINEAR, linear interpolation, the same as Inter.BILINEAR.
Inter.NEAREST, nearest-neighbor interpolation.
Inter.BICUBIC, bicubic interpolation.
Inter.CUBIC, cubic interpolation, the same as Inter.BICUBIC.
Inter.PILCUBIC, cubic interpolation based on the implementation of Pillow, only numpy.ndarray input is supported.
Inter.AREA, pixel area interpolation, only numpy.ndarray input is supported.
- Raises
TypeError – If start_points is not of type Sequence[Sequence[int, int]].
TypeError – If end_points is not of type Sequence[Sequence[int, int]].
TypeError – If interpolation is not of type
mindspore.dataset.vision.Inter
.RuntimeError – If shape of the input image is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> from mindspore.dataset.transforms import Compose >>> from mindspore.dataset.vision import Inter >>> >>> start_points = [[0, 63], [63, 63], [63, 0], [0, 0]] >>> end_points = [[0, 32], [32, 32], [32, 0], [0, 0]] >>> transforms_list = Compose([vision.Decode(), ... vision.Perspective(start_points, end_points, Inter.BILINEAR)]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")