mindspore.ops.STFT
- class mindspore.ops.STFT(n_fft, hop_length, win_length, normalized, onesided, return_complex)[source]
STFTs can be used as a way of quantifying the change of a nonstationary signal’s frequency and phase content over time.
- Parameters
n_fft (int) – The size of Fourier transform.
hop_length (int) – The distance between neighboring sliding window frames.
win_length (int) – the size of window frame and STFT filter.
normalized (bool) – controls whether to return the normalized STFT results.
onesided (bool) – controls whether to return half of results to avoid redundancy for real inputs.
return_complex (bool) – If True, return a complex tensor. If False, return a real tensor with an extra last dimension for the real and imaginary components.
- Inputs:
x (Tensor) - Time sequence of stft, must be either a 1-D time tensor or a 2-D tensor.
window (Tensor) - the optional window function.
- Outputs:
y (Tensor) - A tensor containing the STFT result with shape described above.
Examples
>>> import mindspore as ms >>> from mindspore.ops import STFT >>> import numpy as np >>> x = ms.Tensor(np.random.rand(2,7192), ms.float32) >>> window = ms.Tensor(np.random.rand(64), ms.float32) >>> stft = STFT(64, 16, 64, False, True, True) >>> output = stft(x, window) >>> print(output.shape) (2, 33, 446)