mindspore.ops.LogSpace
- class mindspore.ops.LogSpace(steps=10, base=10, dtype=mstype.float32)[source]
Returns a one-dimensional tensor of size steps whose values are evenly spaced from \(base^{start}\) to \(base^{end}\) , inclusive, on a logarithmic scale with base.
\[\begin{split}\begin{aligned} &step = (end - start)/(steps - 1)\\ &output = [base^{start}, base^{start + 1 * step}, ... , base^{start + (steps-2) * step}, base^{end}] \end{aligned}\end{split}\]- Parameters
steps (int, optional) – The steps must be a non-negative integer. Default: 10.
base (int, optional) – The base must be a non-negative integer. Default: 10.
dtype (mindspore.dtype, optional) – The dtype of output, include mindspore.float16, mindspore.float32 or mindspore.float64(for GPU). Default: mindspore.float32.
- Inputs:
start (Tensor) - Start value of interval, with shape of 0-D, dtype is float16, float32 or float64(for GPU).
end (Tensor) - End value of interval, with shape of 0-D, dtype is float16, float32 or float64(for GPU).
- Outputs:
Tensor has the shape as (step, ). Its datatype is set by the attr ‘dtype’.
- Raises
TypeError – If input is not a Tensor.
TypeError – If steps is not an int.
TypeError – If base is not an int.
TypeError – If dtype is not mindspore.float16, mindspore.float32 or mindspore.float64(for GPU).
ValueError – If steps is not a non-negative integer.
ValueError – If base is not a non-negative integer.
- Supported Platforms:
GPU
CPU
Examples
>>> logspace = ops.LogSpace(steps = 10, base = 10, dtype=mindspore.float32) >>> start = Tensor(1, mindspore.float32) >>> end = Tensor(10, mindspore.float32) >>> output = logspace(start, end) >>> print(output) [1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 1.e+06 1.e+07 1.e+08 1.e+09 1.e+10]